Introduction to Selected Classes of the QuantLib Library II

Dimitri Reiswich

December 2010

Dimitri c QuantLib Intro IT December 2010 1/ 148

In the whole tutorial I assume that you have included the QuantLib header via
#include <ql/quantlib.hpp>

in the code. I will not state this include command in the example code explicitly, so be sure
that you have included the header everywhere. Also, I will use the QuantLib namespace to
make the code more readable and compact. To reproduce the code, make sure to state

using namespace QuantLib;

in the place where you are using the code.

Dimitri R QuantLib Intro IT December 2010 2/ 148

Mathematical Tools
m Integration

m Solver

m Exercise

m Interpolation

m Matrix

m Optimizer

m Exercise

m Random Numbers
m Copulas

Fixed Income

m Indexes

m Interest Rate

m Yield Curve Construction

Volatility Objects
m Smile Sections

Payoffs and Exercises

Black Scholes Pricer
m Black Scholes Calculator

Stochastic Processes

m Generalized Black Scholes Process
m Ornstein Uhlenbeck Process

m Heston Process

m Bates Process

Dimitri R ic QuantLib Intro IT

December 2010

3/ 148

Mathematical Tools
m Integration

Fixed Income

=

Volatility Objects

=

Payoffs and Exercises

Black Scholes Pricer

-]

Stochastic Processes

QuantLib Intro IT December 2010 4 / 148

QuantLib provides several procedures to calculate the integral

/: f(z)dz

of a scalar function f: R — R. For the majority of the integration procedures we have to
provide

m an absolute accuracy: if the increment of the current calculation and the last calculation
is below the accuracy, stop the integration.

m the number of maximum evaluations: if this number is reached, stop the integration.

For special numerical integrations, such as the Gaussian Quadrature procedure, we have to
provide other parameters. The first group of integration procedures will be discussed first.

Dimitri R c QuantLib Intro IT December 2010 5/ 148

This group includes the
m TrapezoidIntegral
® SimpsonIntegral
m GaussLobattoIntegral
m GaussKronrodAdaptive
m GaussKronrodNonAdaptive

The mathemtical details of the procedures are discussed in the numerical standard literature.
In QuantLib, the setup to construct a general numerical integrator is

Integrator myIntegrator(Real absoluteAccuracy, Size maxEvaluations)
The integral between a and b is retrieved through
Real operator() (const boost::function<Real (Real)>& f,Real a, Real b)

by passing a boost function object to the operator.

QuantLib Intro IT December 2010 6 / 148

To test the integration procedures, we will look at the integral representation of a call with
strike K given as

oo
eTTTRE(S - K)t =T / (z — K)f(z)dz
K
with f(z) being the lognormal density with mean
L 5
log(So) + (r — 3)T

and standard deviation

s =0T

In the following example, the integral will be calculated numerically. The corresponding code
follows.

QuantLib Intro IT December 2010 7 / 148

#include <boost/math/distributions.hpp>

Real callFunc(Real spot, Real strike,
Rate r, Volatility vol, Time tau, Real x){

Real mean=log(spot)+(r-0.5%vol*vol)*tau;
Real stdDev=vol*sqrt(tau);

boost::math::lognormal_distribution<> d(mean,stdDev);
return (x-strike)*pdf (d,x)*exp(-r*tau);

void testIntegrationd (){

Real spot=100.0;
Rate r=0.03;

Time tau=0.5;
Volatility vol=0.20;
Real strike=110.0;

Real a=strike, b=strikex10.0;

boost::function<Real (Real)> ptrF;
ptrF=boost::bind (&callFunc,spot,strike,r,vol,tau,_1);

Real absAcc=0.00001;
Size maxEval=1000;

SimpsonIntegral numInt(absAcc,maxEval);

std::cout << "Call Value: " << numInt(ptrF,a,b) << std::endl;

QuantLib Intro IT December 2010 8 / 148

The output is the same as the one calculated by a standard Black-Scholes formula

Call Value: 2.6119

The code shows an elegant application of the boost::bind class. First, we define a function
called callFunc which represents the integrand. This function takes all needed the
parameters. Afterwards, we bind this function to a given set of market parameters leaving
only the x variable as the free variable. The new function maps from R to R and can be used
for the integration. Of course, any density can be used here, allowing for a general pricer.

Dimitri R QuantLib Intro IT December 2010 9 / 148

An n—point Gaussian Quadrature rule is constructed such that it yields an exact integration
for polynomials of degree 2n — 1 (or less) by a suitable choice of the points z; and w; for
i=1,...,n with

1 n
/ f@)de ~ S wif(z:)
-1 i=1

The integral [—1, 1] can be transformed easily to a general integral [a, b]. There are different
version of the weighting functions, and integration intervals. Quantlib offers the following
(see the documentation)

® GaussLaguerreIntegration: Generalized Gauss-Laguerre integration for

/000 f(z)dz

w(z,s) == xz%e” " with s > —1

the weighting function here is

Dimitri R QuantLib Intro IT December 2010 10 / 148

m GaussHermiteIntegration: Generalized Gauss-Hermite integration

/j:o f(z)dz

with weighting function
2
w(z, p) = |z|*e™ with pu > —0.5

m GaussJacobilntegration: Gauss-Jacobi integration

/_11 f(z)dz

w(z,a,B) = (1 —2)*(1+z)? with o, 3> 1

with weighting function

Dimitri R c QuantLib Intro IT

December 2010

11 / 148

B GaussHyperbolicIntegration:

with weighting

m GaussLegendreIntegration

with weighting

700 f(z)dz
1
wi@) = cosh(z)
‘1

QuantLib Intro IT

December 2010

12 / 148

m GaussChebyshevIntegration

/711 f(z)dz

w(z) = /(1 - 2?)

Also, GaussChebyshev2thIntegration (the second kind) is available.

/_11 fz)dz

w(z,\) = (1 —2%) /2

with weighting

B GaussGegenbauerIntegration:

with weighting

Some of the Gaussian quadrature integrators will be tested on the next slide. The test will
show the integration of the normal density with respect to the fixed limits. The integrators
should reproduce the known analytical results (for example, integrating the density over

[0, oo] should give 0.5).

Dimitri R QuantLib Intro IT December 2010 13 / 148

#include <boost/function.hpp>
#include <boost/math/distributions.hpp>

void testIntegration2(){

boost::function<Real (Real)> ptrNormalPdf (normalPdf);
GaussLaguerrelntegration gLagInt(16); // [0,\infty]
GaussHermiteIntegration gHerInt(16); //(-\infty,\infty)
GaussChebyshevIntegration gChebInt(64); //(-1,1)
GaussChebyshev2thIntegration gChebInt2(64); //(-1,1)

Real analytical=normalCdf (1)-normalCdf (-1);

<< "Laguerre:" << gLagInt(ptrNormalPdf) << std

<< "Hermite:" << gHerInt (ptrNormalPdf) << st

<< "Analytical:" << analytical << std::endl;

<< "Cheb:" << gChebInt (ptrNormalPdf) << std::endl;
<< "Cheb 2 kind:" << gChebInt2(ptrNormalPdf) << std::endl;

The output of this function is

Laguerre:0.499992
Hermite:1
Analytical:0.682689
Cheb:0.682738

Cheb 2 kind:0.682595

QuantLib Intro IT December 2010

14 / 148

As already mentioned, it is quite easy to transform the interval bounds from [—1,1] to a
general interval [a, b] via the following formula

[s =220 [(P e s 0

This shows that it is possible to use some Gaussian Quadrature integrators, even though
they are specified for the interval [—1,1]. The QuantLib integrators expect a function which
takes one variable z. However, the integrated function in the right integral of equation (1)
accepts 3 instead of 1 variables: x,a,b. This problem represents one case in a general class of
problems, where a function with more than one input parameter is given, but only one
parameter is a true variable. To integrate this function in QuantLib, we need to reduce the
function to a mapping which accepts one parameter only. This can be achieved easily by
using boost’s bind and function libraries. We will examine a 3 variable example below.
Assume that you need to integrate the function

Real myFunc(const Real& x, const Real& a, const Real& b)
but the variables a, b are constants. First, declare a function pointer via

boost::function <double (double)> myFuncReduced;

Dimitri R ic QuantLib Intro IT December 2010 15 / 148

Given the parameters a,b the next step is to bind these variables to the function func and
assign the result to the function pointer myFuncReduced. The corresponding code is

myFuncReduced=boost : :bind (myFunc,_1,a,b);

The pointer myFuncReduced now represents a function f : R — R which can be handled over to
the Gaussian Quadrature integrator. The code below shows an example, where we integrate
the normal density over the interval [—1.96,1.96].

Real normalPdf (const Real& x, const Real& a, const Real& b){
boost::math::normal_distribution<> d;
Real t1=0.5%(b-a), t2=0.5x(b+a);
return ti*pdf (d,ti*x+t2);

}

void testIntegration3 (){
Real a=-1.96, b=1.96;
boost::function <double (double)> myPdf ;

myPdf=boost::bind (normalPdf,_1,a,b);
GaussChebyshevIntegration gChebInt (64); //(-1,1)

Real analytical=normalCdf (b)-normalCdf(a);

std::cout << "Analytical:” << analytical<< std::endl;
std::cout << "Chebyshev:" << gChebInt (myPdf)<< std::endl;

QuantLib Intro IT December 2010 16 / 148

The output of this function is

Analytical:0.950004
Chebyshev:0.950027

Dimitri R QuantLib Intro IT December 2010 17 / 148

Mathematical Tools

m Solver

Fixed Income

=

Volatility Objects

=

Payoffs and Exercises

Black Scholes Pricer

-]

Stochastic Processes

QuantLib Intro IT December 2010 18 / 148

QuantLib offers a variety of different one-dimensional solvers which search for an x such that
f(x) =0

given a function f : R — R. The following routines are avalable
® Brent
m Bisection
m Secant
B Ridder
m Newton: requires a derivative of the objective function
B FalsePosition

The constructor is a default constructor, taking no arguments. For example, Brent’s solver
can be initialized by Brent mySolv;

QuantLib Intro IT December 2010 19 / 148

The solver has an overloaded solve function with the following 2 versions

Real solve(const F& f,
Real accuracy,
Real guess,

Real step)

Real solve(const F& f,
Real accuracy,
Real guess,
Real xMin,
Real xMax)

The solve routine is a template function, which accepts any class F that has an operator of
the form

Real operator()(const Real& x)

This can be either a class with such an operator or a function pointer. The accuracy
parameter has different meanings, depending on the used solver. See the documentation for
the definition in the solver you prefer. It enforces the solving routine to stop when

m either |f(z)] < e

m or |z — z;| < € with z; being the true zero.

QuantLib Intro IT December 2010 20 / 148

The other variable meanings are
m guess: your initial guess of the root

m step: in the first overloaded version, no bounds on the interval for the root are given. An
algorithm is implemented to automatically search for the bounds in the neighborhood of
your guess. The step variable indicates the size of the steps to proceed from the guess.

m xMin, xMax: are the left and right interval bounds.

The classical application of a root solver in Quantitative Finance is the implied volatility
problem. Given a price p and the parameters So, K, 74,7, T we are seeking a volatility o
such thad

)

f(o) = blackScholesPrice(So, K, 74,7f,0,7,¢) —p =0

is fulfilled. The Black-Scholes function accepts either ¢ = 1 for a call or ¢ = —1 for a put. In
the following example the Black Scholes function will be hard coded, although it is of course
available in QuantLib and will be introduced later. Since the root solver accepts an object
with an operator double operator() (double) we will need an implementation of f(o) given all
the other parameters. We will use again boost’s bind function for a convenient setup. The
next slide shows the hard coded implementation of the Black-Scholes function and implied
volatility problem.

QuantLib Intro IT December 2010 21 / 148

#include <boost/math/distributions.hpp>

Real

Real

blackScholesPrice(const Real& spot,
const Real& strike,
const Rate& rd,
const Rated rf,
const Volatility& vol,
const Time& tau,
const Integer& phi){

boost::math::normal_distribution<> d(0.0,1.0);
Real dp,dm, fwd, stdDev, res, domDf, forDf;

domDf=std::exp(-rd*tau); forDf=std::exp(-rfxtau);
fud=spot*forDf/domDf ;
stdDev=vol*std::sqrt(tau);

log(fwd/strike)+0.5*stdDev*stdDev)/stdDev;
::log(fwd/strike)-0.5xstdDevxstdDev)/stdDev;

res=phi*domDf *(fwd*cdf (d,phi*dp)-strike*cdf (d,phixdm));
return res;

impliedVolProblem(const Real& spot,
const Rate& strike,
const Rate& rd,
const Rate& rf,
const Volatility& vol,
const Time& tau,
const Integer& phi,
const Real& price){

return blackScholesPrice(spot,strike, rd,rf,vol,tau, phi) - price;

QuantLib Intro IT

December 2010

22 / 148

The next step is to setup f(o) with

boost::function<Real (Volatility)> myVolFunc;

bind all the parameters, except the volatility, to this function and call the root solver. The

code testing different solvers is given below
void testSolver1(){

// setup of market parameters
Real spot=100.0,strike=110.0;
Rate rd=0.002, rf=0.01, tau=
Integer phi=1;

Real vol=0.1423;

// calculate corresponding Black Scholes price

Real price=blackScholesPrice (spot,strike,rd,rf,vol,tau,phi);

// setup a solver

Bisection mySolvi; Brent mySolv2; Ridder mySolv3;

Real accuracy=0.00001, guess=0.25;

Real min=0.0, max=1.0;

// setup a boost function

boost::function<Real (Volatility)> myVolFunc;

// bind the boost function to all market parameters, keep vol as variant
myVolFunc=boost::bind (#impliedVolProblem,spot,strike,rd,rf,_1,tau,phi,price);
// solve the problem

Real resi=mySolvl.solve(myVolFunc,accuracy,guess,min,max)

Real res2=mySolv2.solve(myVolFunc,accuracy,guess,min,max);

Real res3=mySolv3.solve(myVolFunc,accuracy,guess,min,max);

tcout << "Input Volatility:" << vol << std::endl;

cout << "Implied Volatility Bisection:" << resl << std::endl;
cout << "Implied Volatility Brent:" << res2 << std::endl;
cout << "Implied Volatility Ridder:" << res3 << std ndl;

QuantLib Intro IT December 2010

23 / 148

The output of the program is

Input Volatility:0.1423

Implied Volatility Bisection:0.142296
Implied Volatility Brent:0.1423
Implied Volatility Ridder:0.1423

The Newton algorithm requires the derivative ng, (the vega) of the function f(o) for the root
searcher. We will show again for the implied volatility example how the derivative can be
incorporated. However, we need a class for this case which implements a function called

derivative. Example code for the class which will be used in the solver is shown next

Dimitri R ic QuantLib Intro IT December 2010 24 / 148

#include <boost/math/distributions.hpp>

class BlackScholesClass{

private:

Real spot_,strike_,price_,logFwd_;

Real dp_,domDf_,forDf_,fwd_,sqrtTau_;

Rate rd_,rf_;

Integer phi_;

Time tau_;

boost::math::normal_distribution<> d_;

public:

BlackScholesClass (const Real& spot,

const Real& strike,
const Rate& rd,
const Rate& rf,
const Time& tau,
const Integer& phi,
const Realk price)
:spot_(spot), strike_(strike), rd_(rd),rf_(rf),phi_(phi),
tau_(tau),price_(price), sqrtTau_(std::sqrt(tau)),
d_(boost::math::normal_distribution<>(0.0,1.0)){

domDf_=std xp(-rd_*tau_);
forDf_=std xp(-rf_*xtau_);
fwd_=spot_xforDf_/domDf_;
logFwd_=std::log(fwd_/strike_);

}

Real operator()(const Volatility& x) const{
return impliedVolProblem(spot_, strike_,rd_,rf_,x,tau_,phi_,price_);

¥
Real derivative(const Volatility& x)const{
// vega
Real stdDev=x*sqrtTau_;
Real dp=(logFwd_+0.5%stdDev*stdDev)/stdDev;
return spot_xforDf_xpdf (d_,dp)*sqrtTau_;
}

QuantLib Intro IT December 2010 25 / 148

The class has an operator which returns the output of the function impliedVolProblem, as
before. Furthermore, a function derivative is defined which returns the vega for a given
volatility. The code below shows how to setup the corresponding root search problem. In
addition, the setup without given interval bounds is shown.

void testSolver2(){

// setup of market parameters
Real spot=100.0,strike=110.0;
Rate rd=0.002, rf=0.01, tau=0.5;
Integer phi=1;
Real vo0l=0.1423;
// calculate corresponding Black Scholes price
Real price=blackScholesPrice(spot,strike,rd,rf,vol,tau,phi);

BlackScholesClass solvProblem(spot,strike,rd,rf,tau,phi,price);

Newton mySolv;

Real accuracy=0.00001, guess=0.10;

Real step=0.001;

// solve the problem

Real res=mySolv.solve(solvProblem,accuracy,guess,step);

std::cout << "Input Volatility:" << vol << std::endl;
std::cout << "Implied Volatility:" << res << std::endl;

QuantLib Intro IT December 2010 26 / 148

The output is:

Input Volatility:0.1423
Implied Volatility:0.1423

Dimitri R c QuantLib Intro IT December 2010 27 / 148

= Calculate the square root of 2 numerically by solving 2 — 2 = 0. Choose any root
searcher you prefer.

m Integrate the cosine function from [0, g] numerically. Choose any integration method
you like. Compare this to the analytical result.

= Calculate the number 7 numerically by solving sin(z) = 0

Dimitri R QuantLib Intro IT December 2010 28 / 148

=

=

g =

Mathematical Tools

m Interpolation

Fixed Income

Volatility Objects

Payoffs and Exercises

Black Scholes Pricer

Stochastic Processes

Dimitri R

QuantLib Intro IT

December 2010

29 / 148

On of the most frequently used tools in Quantitative Finance is interpolation. The basic idea
is that you are given a discrete set of (z;, f(z;)) ¢ € {0, ...,n} values of an unknown function
f and you are interested in a function value at any point z € [zg, z»]. The standard
application is the interpolation of yield curves or volatility smiles. QuantLib offers the
following 1-dimensional and 2— dimensional interpolations

m LinearInterpolation (1—D)

m LogLinearInterpolation and LogCubicInterpolation (1-D)
m BackwardFlatInterpolation (l—D)

m ConvexMonotone (1-D)

m CubicInterpolation (1-D)

B ForwardFlatInterpolation (l—D)

m SABRInterpolation (1-D)

m BilinearInterpolation (2-D)

m BicubicSpline (2-D)

QuantLib Intro IT December 2010 30 / 148

We will assume that the x and y values are saved in std::vector<Real> vectors called
xVec,yVec. The basic structure of the constructors is

Interpolation myInt(xVec.begin(),xVec.end(),yVec.begin(),optional parameters)

As usual, xVec.begin() returns a pointer showing to the first element of xvVec, while xVec.end ()
points to the element succeeding the last element. The interpolated value at a given point x
can then be obtained via the operator

Real operator() (Real x, bool allowExtrapolation)

The last boolean indicates, if values outside the initial x-range are allowed to be calculated.
This parameter is optional and is by default set to false. As a simple example, assume that
we are given a grid of x-values 0.0, 1.0, ..., 4.0 with corresponding y-values produced by the
exponential function. We are interested in the linearly interpolated value at x = 1.5.
Example code for the LinearInterpolation class is given below.

Dimitri R c QuantLib Intro IT December 2010 31 / 148

In the example below, we set up a grid of x values and generate the corresponding y values
with the exponential function. After this setup, we ask for a linearly interpolated value.

#include<vector>
void testingInterpolationsi(){

std::vector<Real> xVec(5), yVec(xVec.size());

xVec [0]1=0.0; yVec[0l=std::exp(0.0);
xVec [1] 0; yVec[1l=std::exp(1.0);
xVec[2]=2.0; yVec[2]=std::exp(2.0);
xVec [3]1=3.0; yVec[3]=std::exp(3.0);
xVec [4]=4.0; yVec[4]=std::exp(4.0);

LinearInterpolation linInt(xVec.begin(), xVec.end(), yVec.begin());

std::cout << "Ezp at 0.0 " << 1inInt (0.0) << std::endl;
std::cout << "Ezp at 0.5 " << 1inInt(0.5) << std::endl;
std::cout << "Ezp at 1.0 " << 1inInt (1.0) << std::endl;

QuantLib Intro IT December 2010 32 / 148

The output of the program is

Exp at 0.0 1
Exp at 0.5 1.85914
Exp at 1.0 2.71828

A very popular interpolation is the cubic spline interpolation. The natural cubic spline is a
cubic spline whose second order derivatives are 0 at the endpoints. The example below shows
the setup of this interpolation for a volatility interpolation example
#include <map>
void testingInterpolations2(){

std::vector<Real> strikeVec(5), volVec(strikeVec.size());

strikeVec [0]=70.0; volVec [0]=0.241;

strikeVec [1]=80.0; volVec[1]=0.224;

strikeVec [2]=90.0; volVec[2]=0.201;

strikeVec [3 00.0; volVec[3]=0.211;
strikeVec [4]=110.0; volVec [4]1=0.226;

CubicNaturalSpline natCubInt(strikeVec.begin(),strikeVec.end(),
volVec.begin());

std::cout << "Vol at 70.0 " << natCubInt(70.0) << std::endl;
std::cout << "Vol at 75.0 " << natCubInt(75.0) << std::endl;
std::cout << "Vol at 79.0 " << natCubInt(79.0) << std::endl;

QuantLib Intro IT December 2010 33 / 148

The output is

Vol at 70.0 0.241
Vol at 75.0 0.233953
Vol at 79.0 0.226363

For a general cubic spline interpolation, QuantLib provides the class CubicInterpolation. There
are a lot of different options to set up such a spline. For example, one can ask

= Do I want monotonicity in my interpolation?
® Which method should be used to calculate derivatives given a discrete set of points?

m Which boundary conditions should be satisfied? For example, we could set the first
derivative at the left endpoint to be 1.0.

The current derivative methods are the Spline and Kruger procedures.

Dimitri R ic QuantLib Intro IT December 2010 34 / 148

The boundary conditions are defined as
m NotAKnot: ensures a continuous third derivative at 1, zn—1.
m FirstDerivative: match the slope at end point
m SecondDerivative: match the convexity at end point
m Periodic: match slope(first derivative) and convexity(second derivative) at both ends
m Lagrange: match end-slope to the slope of the cubic that matches the first four data
points at the respective end
The constructor is then given as

CubicInterpolation(const I1& xBegin,
const I1& xEnd,
const I2& yBegin,
CubicInterpolation::DerivativeApprox da,
bool monotonic,
CubicInterpolation::BoundaryCondition leftCond,
Real leftConditionValue,
CubicInterpolation::BoundaryCondition rightCond,
Real rightConditionValue)

QuantLib Intro IT December 2010 35 / 148

To illustrate an explicit construction, we will setup a natural cubic spline manually, without
the convenient constructor introduced before. The previously introduced interpolated
volatility example is simply rewritten with a cubic spline with a manual setup. We will not
require the spline to be monotonic and will enforce the second derivative to be zero by using
the CubicInterpolation::SecondDerivative option.

Example code is given on the next slide. To test the result, the simple
NaturalCubicInterpolation class is constructed too. The output of the corresponding program
is

Nat Cub: 0.233953
Nat Cub Manual: 0.233953

Obviously, the interpolations produce the same result. We will not show any examples
regarding the 2D interpolations, since these classes are not tested yet.

Dimitri R ic QuantLib Intro IT December 2010 36 / 148

void testingInterpolations3(){

std::vector<Real> strikeVec(5), volVec(strikeVec.size());

strikeVec [0]=70.0; volVec[0]=0.241;
strikeVec [11=80.0; volVec[1]=0.224;
strikeVec [2]=90.0; volVec[2]=0.201;
strikeVec [3]1=100.0; volVec[3]=0.211;
strikeVec [4]1=110.0; volVec[4]=0.226;

CubicNaturalSpline natCubInt(strikeVec.begin(),strikeVec.end(),
volVec.begin());

CubicInterpolation natCubIntManual(strikeVec.begin(),strikeVec.end(),volVec.begin(),
CubicInterpolation::Spline, false,
CubicInterpolation::SecondDerivative, 0.0,
CubicInterpolation::SecondDerivative, 0.0);

cout << "Nat Cub: " << natCubInt(75.0) << std::endl;
cout << "Nat Cub Manual: " << natCubIntManual (75.0) << std::endl;

QuantLib Intro IT December 2010 37 / 148

A very important issue is the behavior of the interpolations in the case where the original
values change. Assume again that you have created x,y vectors called xVec, yVec. If you
change any value of one of the input vectors you need to update your interpolation via the
update() function. You may ask yourself why this is necessary. You might even remember
that we have passed pointers to the constructors and no internal copies of the vectors were
made. Consequently, the interpolation should simply look up the new values at the pointed
addresses.

The point here is that the interpolation calculates some coefficients after construction and
doesn’t recalculate them again, if the user doesn’t tell it to do it via update. Consider the
cubic example below

fl@) =a+blx—a;)+ clx —x;)? + d(z — x;)2 for & € [z, xi41]

The coefficient parameters a, ..., d are calculated once after the constructor is called, given all
input values. It would be inefficient to calculate these values each time the function is called,
since the only remaining true variable after construction is the value x. However, if one of
the input values changes, you can enforce the recalculation once by calling update(). This will
update the parameters a,...,d. We will show this in an example where we use the initially
introduced linear interpolation of exponential function values.

Dimitri R ic QuantLib Intro IT December 2010 38 / 148

#include<vector>
void testingInterpolations4 (){

std::vector<Real> xVec(5), yVec(xVec.size());

xVec [0]=0 yVec [0]=std::exp(0.0);
xVec [1]=1 yVec[1]l=std::exp(1.0);
xVec [2]=2

xVec [3]
xVec [4]1=4

.05
.05
.0; yVec[2]=std::exp(2.0);
.0; yVec[3]=std::exp(3.0);
.0; yVec[4]l=std::exp(4.0);

LinearInterpolation linInt(xVec.begin(), xVec.end(), yVec.begin());

std::cout << "Ezp at 0.5 original " << 1linInt (0.5) << std::endl;
yVec[1l=std::exp(5.0);

std::cout << "Ezp at 0.5 resetted not updated:"” << 1linInt (0.5) << std::endl;
linInt.update();

std::cout << "Ezp at 0.5 updated:" << 1inInt (0.5) << std::endl;

QuantLib Intro IT December 2010 39 / 148

In this example we have set the value at « = 1.0 to y = exp(5.0) instead of y = 1.0. This
implies a higher y value at the point x = 0.5. The output of the function is

Exp at 0.5 original 1.85914
Exp at 0.5 resetted not updated:1.85914
Exp at 0.5 updated:74.7066

Dimitri R ic QuantLib Intro IT December 2010 40 / 148

=

=

g =

Mathematical Tools

m Matrix

Fixed Income

Volatility Objects

Payoffs and Exercises

Black Scholes Pricer

Stochastic Processes

QuantLib Intro IT

December 2010

41 / 148

The math section has a matrix library to perform the standard matrix operations. The given
Matrix class is meant to be a true Linear Algebra object and not a container for other types.
Matrix algebra is not the main focus of QuantLib, other libraries are more advanced and
efficient in this area. It does not mean that QuantLib is extremely slow. However, other
programming languages such as Matlab, Octave are designed with respect to a fast
performance in matrix operations and will outperform other libraries. If you need quick
matrix results, feel free to use QuantLib. The standard constructor is

Matrix A(Size rows, Size columns)
for a matrix and
Array v(Size i)
for a vector. The elements are accessed via

A[i1[3] or v[i]

The matrix rows and columns are returned by rows() and columns() functions. The length of
the vector by the size() function. The matrix defines a variety of different iterators for
iterations through columns or rows. Similarly, vector iterators are available. Also, the
standard operators *, 4, — are defined for matrix-matrix, matrix-vector and matrix-scalar
operations.

Dimitri R c QuantLib Intro IT December 2010 42 / 148

The following, self explaining static functions are available
B Matrix transpose(const Matrix&)
B Matrix inverse(const Matrix& m)
B Real determinant(const Matrix& m)
m outerProduct(const Array& vl, const Array& v2)

Example code, which uses some of the functions is given below

void testingMatrix1 (){

Matrix A(3,3);

A[0]1[01=0.2;A[01[1]1=8.4;A[0][2]=1.5;
A[11[0]1=0.6;A[1]1[1]=1.4;A[1][2]=7.3;
A[2]1[0]=0.8;A[2][1]=4.4;A[2][2]=3.2;

Real det=determinant(A);
QL_REQUIRE(!close(det,0.0), "Non invertible matriz!");

Matrix invA=inverse(A);

std::cout << A << std::endl;

std::cout << M------------oo " << std::endl;
std::cout << transpose(A) << std::endl;
std::cout << Mo------------o " << std::endl;

L " << std::endl;

" << std::endl;
AxinvA << st

-" << std::endl;

QuantLib Intro IT December 2010 43 / 148

The close function checks for equality with respect to some multiple of machine precision.
The output of the function is

| 0.2 8.4 1.5 |
| 0.6 1.4 7.3 |
| 0.8 4.4 3.2 |
| 0.2 0.6 0.8 |
| 8.4 1.4 4.4 |
| 1.5 7.3 3.2 |
29.68

| -0.931267 -0.683288 1.99528 |

| 0.132075 -0.0188679 -0.0188679 |
| 0.0512129 0.196765 -0.160377 |

| 1 5.55112e-017 0 |

| -5.55112e-017 1 0 |

| 001 |

Dimitri R ic QuantLib Intro IT December 2010 44 / 148

Furthermore, various decompositions are available. For example

m CholeskyDecomposition: A = UUT with U being an lower triangular with positive diagonal
entries.

® SymmetricSchurDecomposition: A = UDUT with D being the diagonal eigenvalue matrix
and U a matrix containing the eigenvectors.

m SVD (Singular Value Decomposition): A = UDV with U,V being orthogonal matrices, D
being a nonnegative diagonal.

m pseudoSqrt: A = SST, the implementation allows to specify the internally used algorithm
to achieve this.

Furthermore, a QR solver is available in the qrSolve function. Example code calling the
functions above is available on the next slide.

Dimitri R QuantLib Intro IT December 2010 45 / 148

void testingMatrix2(){

Matrix A(3,3);

Af0l[0] = 1.0; A[0][1] = 0.9; A[0][2] = 0.7
A[1]1[0] = 0.9; A[1][1] = 1.0; A[1]1[2] = 0.4
A[2]1[0] = 0.7; A[2][1] = 0.4; A[2][2] = 1.0
SymmetricSchurDecomposition schurDec(A);
SVD svdDec (A);
std::cout << "Schur Eigenvalues:" << std::endl;

std::cout << schurDec.eigenvalues() << std::endl;
L " << std::endl;
"Schur Eigenvector Mat:" << std::endl;
schurDec.eigenvectors () << std::endl;
endl;

"Cholesky:" << std::endl;
CholeskyDecomposition(A) << std::endl;
Mommmmmm e " << std::endl;

"SVD U:" << std::endl;

svdDec.U() << std::endl;

- -7 << std::endl;

"SUD V:" << std::endl;
svdDec.V() << std::endl
L " << std::endl;

"SVD Diag D:" << std::endl;
svdDec.singularValues () << std::endl;
Mommmmmm e " << std::endl;
"Pseudo Sqrt:" << std::endl;
std::cout << pseudoSqrt(A) << std::endl;

QuantLib Intro IT

December 2010

46 / 148

The output is

Schur Eigenvalues:
2.35364; 0.616017; 0.0303474

Schur Eigenvector Mat:

| 0.643624 0.11108 0.757238 |

| 0.576635 0.58018 -0.575225 |
| 0.50323 -0.806878 -0.309365 |

0.643624 -0.11108 0.757238 |
0.576635 -0.58018 -0.575225 |
0.50323 0.806878 -0.309365 |
SVD V:

| 0.643624 -0.11108 0.757238 |
| 0.576635 -0.58018 -0.575225 |
| 0.50323 0.806878 -0.309365 |
SVD Diag D:

2.35364; 0.616017; 0.0303474

SVD U:
|
|
|

QuantLib Intro IT

December 2010

47 / 148

Mathematical Tools

m Optimizer

Fixed Income

=

Volatility Objects

=

Payoffs and Exercises

Black Scholes Pricer

-]

Stochastic Processes

QuantLib Intro IT December 2010 48 / 148

One of the most important tools, in particular in calibration procedures, is an optimizer of a
function f: R™ — R. The typical problem that requires an optimization is a least squares
problem. For example, the typical problem is: find a model parameter set such that some
cost function is minimized. The available optimizers in QuantLib are

B LevenbergMarquardt

m Simplex

m ConjugateGradient (line search based method)

m SteepestDescent (line search based method)

m BFGS (line search based method) QL 1.0.0

QuantLib Intro IT December 2010 49 / 148

To setup up an optimizer, we need to define the end criteria which lead to a successful
optimization. They are summarized in the EndCriteria class whose constructor os

EndCriteria(Size maxIterations,
Size minStationaryStatelterations,
Real rootEpsilon,
Real functionEpsilon,
Real gradientNormEpsilon);
The input parameters of this class are
» Maximum iterations: restrict the maximum number of solver iterations.
= Minimum stationary state iterations: give a minimum number of iterations at stationary
point (for both, function value stationarity and root stationarity).
= Function e: stop if absolute difference of current and last function value is below e.
m Root e: stop if absolute difference of current and last root value is below e.
m Gradient e: stop if absolute difference of the norm of the current and last gradient is
below e.

Note that not all of the end criteria are needed in each optimizer. I haven’t found any
optimizer which checks for the gradient norm. The simplex optimizer is the only one
checking for root epsilon. Most of the optimizers check for the maximum number of
iterations and the function epsilon criteria.

QuantLib Intro IT December 2010 50 / 148

Next, we need to specify if any constraints on the optimal parameter values are given. This
can be specified via the classes derived from the Constraint class

m NoConstraint

m PositiveConstraint: require all parameters to be positive

® BoundaryConstraint: require all parameters to be in an interval

m CompositeConstraint: require two constraints to be fulfilled at the same time

The last object that needs to be specified for the optimization is the CostFunction, which
implements the function which needs to be minimized. For a setup of your own function, you
need to implement a class which derives from the CostFunction class and implements the
following virtual functions

B Real value(const Array& x) the function value at z. This is a pure virtual function, an
implementation is required.

m Array values(const Array& x): the value f(z) if f: R™ — R™ maps to higher dimensions.
Currently only required for the Levenberg-Marquardt minimization, which will be
discussed later. Return a one dimensional array with value(x) for other methods.

B void gradient(Array% grad, const Array& x) write the vector which will contain the
gradient grad and the value where this gradient is evaluated x. This is optional. A finite
difference method will be used if nothing is implemented by derived classes.

® Real valueAndGradient (Array& grad, const Array& x) return the function value at x, and
write the gradient at x.

Dimitri R c QuantLib Intro IT December 2010 51 / 148

To test the optimizer we will calculate the minimum of the Rosenbrock function, which is a
classical test problem for optimization algorithms. The function is defined as

fla,y) == (1 —=2)% + 100(y — z*)

the minimum is located in a valley at (z,y) = (1,1) with f(z,y) = 0.

Figure: Rosenbrock Function

Dimitri 3 QuantLib Intro IT December 2010 52 / 148

To test the problem, we define a class RosenBrockFunction which inherits from the
CostFunction. The value of the function is returned by value.

class RosenBrockFunction: public CostFunction{

public:
Real value(const Array& x) const{
QL_REQUIRE(x.size()==2, "Rosenbrock function is 2-dim.");
Real res=(1-x[01)*x(1-x[01);
res+=100.0*%(x[1]1-x[0]*x [0])*x(x[1]-x[0]1*x[0]);
return res;
¥
Disposable<Array> values(const Array& x) const{
QL_REQUIRE(x.size()==2, "Rosenbrock function is 2-dim.");
// irrelevant what you write in res for most of the optimizers
// most of them are using value anyways. try with res[0]=100.0
Array res(1); res[0]l=value(x);
return res;
}
};

Next, setup the optimizers. We will test the Simplex and ConjugateGradient optimizers with
starting value (z,y) = (0.1,0.1) and no constraints. The code is shown next.

QuantLib Intro IT December 2010 53 / 148

void testOptimizerl (){

Size maxIterations=1000;

Size minStatIterations=100;
Real rootEpsilon=1le-8;

Real functionEpsilon=1e-9;
Real gradientNormEpsilon=1le-5;

EndCriteria myEndCrit(maxIteratioms,
minStatIterations,
rootEpsilon,
functionEpsilon,
gradientNormEpsilon);

RosenBrockFunction myFunc;
NoConstraint comstraint;

Problem myProbl(myFunc, constraint, Array(2,0.1))
Problem myProb2(myFunc, constraint, Array(2,0.1));

Simplex solver1(0.1);
ConjugateGradient solver2;

EndCriteria

Type solvedCriti=solverl.minimize (myProbl ,myEndCrit);
:Type solvedCrit2=solver2.minimize (myProb2,myEndCrit);

EndCriteria:

std::cout << "Criteria Simplez:"<< solvedCritl << std::endl;
std::cout << "Root Simplexz:"<< myProbl.currentValue() << std::endl;
std::cout << "Min F Value Simplez:"<< myProbl.functionValue() << std::endl
std::cout << "Criteria CG:"<< solvedCrit2 << std::endl;

B << "Root CG:"<< myProb2.currentValue() << std::endl;
<< "Min F Value CG:"<< myProb2.functionValue() << std::endl;

QuantLib Intro IT December 2010 54 / 148

The output of the function is

Criteria Simplex:StationaryPoint
Root Simplex:[1; 1]

Min F Value Simplex:2.92921e-017
Criteria CG:StationaryFunctionValue
Root CG:[0.998904; 0.995025]

Min F Value CG:0.000776496

The Simplex algorithm finds the correct minimum, while the conjugate gradient version stops
very close to it. As shown in the code, the final optimal values will be stored in the Problem
instance which is passed to the minimization function by reference. The minimum can be
obtained via currentValue() and the function value via functionValue().

Furthermore, the criteria which leads to a stopping of the algorithm is returned. It should be
checked that this criteria is not of type EndCriteria::None.

Dimitri R ic QuantLib Intro IT December 2010 55 / 148

Finally, we will show how a setup for the Levenberg Marquardt algorithm works. We will do
this in the framework of the following problem:

Assume you are given 4 call prices C1, C2,C3,C4 in a flat volatility world. Each call C; has
a known strike K;. The only variables which are not known to you are the spot and single
volatility which were used for the price calculation. Consequently, the 2 unknowns are
(0,50). You could try to solve the problem via a least squares problem by minimizing the

following function
4

£(0,80) = > _(C(Ki,0,50) — Ci)?

i=1

This is the typical problem where Levenberg-Marquardt is considered as the optimizer.
QuantLib uses the MINPACK minimization routine, where a general function

fiR" - R™

is considered. Performing the optimization yields the minimum z of the following cost
function ¢

@) =3 fil@)?

where f; : R™ — R are the components of the m dimensional function. To solve the problem
above, we will reuse the function blackScholesPrice which has been introduced before.

QuantLib Intro IT December 2010 56 / 148

The setup for the cost function is shown below.

class CallProblemFunction: public CostFunction{
private:

Real C1_,C2
Rate rd_,rf
Integer phi_;
Time tau_;
public:
CallProblemFunction(const Rate& rd, const Ratek rf, const Time tau, const Integer& phi,
const Real& Ki,const Real& K2,const Realk K3,const Real& K4,
const Real& Cl,const Real& C2,const Real& C3,const Real& C4)
:rd_(rd), rf_(rf), phi_(phi), tau_(tau),
€1_(c1),C2_(C2),C€3_(C3),C4_(C4),
K1_(K1),K2_(K2),K3_(K3),K4_(K4){}

,C3_,C4_,K1_,K2_,K3_,K4_;

Real value(const Array& x) conmst{

Array tmpRes=values(x);

Real res=tmpRes[0]*tmpRes [0];
res+=tmpRes [1]*tmpRes [1];

res mpRes [2]*tmpRes [2] ;
res+=tmpRes [3] xtmpRes [3];
return res;

b
Disposable<Array> values(const Array& x) const{

Array res(4);

res[0]=blackScholesPrice(x[0],K1_,rd_,rf_,x[1],tau_,phi_)-C1_;
res[1]=blackScholesPrice (x[0],K2_,rd_,rf_,x[1],tau_,phi_)-C2_
res[2]=blackScholesPrice(x[0],K3_,rd_,rf_,x[1],tau_,phi_)-C3_;
res[3]=blackScholesPrice (x[0],K4_,rd_,rf_,x[1],tau_,phi_)-C4_;

return res;

QuantLib Intro IT December 2010

57 / 148

void testOptimizer2(){
// setup of market parameters
Real spot=98.51;
Volatility vol=0.134;
Real K1=87.0, K2=96.0, K3=103.0, K4=110.0
Rate rd=0.002, rf=0.01;
Integer phi
Time tau=0.6;
// calculate Black Scholes prices
Real Cl=blackScholesPrice(spot,Kl,rd,rf,vol,tau,phi);
Real C2=blackScholesPrice(spot,K2,rd,rf,vol,tau,phi);
Real C3=blackScholesPrice(spot,K3,rd,rf,vol,tau,phi);
Real C4=blackScholesPrice(spot,K4,rd,rf,vol,tau,phi);

CallProblemFunction optFunc(rd, rf, tau, phi,Ki, K2, K3, K4, C1,

Size maxIterations=1000;

Size minStatIterations=100;
Real rootEpsilon=le-5;

Real functionEpsilon=le-5;
Real gradientNormEpsilon=1e-5;

c2, €3, C4);

EndCriteria myEndCrit(maxIterations,minStatIterations, rootEpsilon,

functionEpsilon, gradientNormEpsilon);

Array startVal(2); startVal[0]=80.0; startVal[1]=0.20;
NoConstraint constraint;

Problem myProb(optFunc, constraint, startVal);
LevenbergMarquardt solver;

EndCriteria::Type solvedCrit=solver.minimize (myProb,myEndCrit);

cout << "Criteria :"<< solvedCrit << std::endl;
:cout << "Root :" << myProb.currentValue() << std::endl;
std::cout << "Min Function Value :"

QuantLib Intro IT

<< myProb.functionValue() << std::endl;

December 2010

58 / 148

In the test code on the previous slide we have chosen Sy = 98.51 and o = 0.134 to calculate
the prices C', ..., C4. We have then constructed the optimization algorithm which should
roughly recover the input variables. The output of the function is

Criteria :StationaryFunctionValue
Root :[98.51; 0.134]
Min Function Value :3.40282e+038

which is a perfect matching of the original variables. The setup in this example has
represented the typical calibration problem, where call prices are given by the market and we
try to match these prices with a given model (e.g. Heston). The objective is to find model
parameters and calculate the model prices at the strikes K;. In case of a successful model
calibration, the market prices should be matched up to a certain error term. For a more
complex and flexible setup, we should pass the number of option prices in a container. The
function blackScholesPrice can be replaced by any vanilla pricer with some degrees of freedom.
It has to be pointed out that the returned array in the function values() needs a dimension
which is at least the dimension of the parameter vector x. In mathematical terms: for

f:R* = R™

we need to have m > n. Otherwise you will receive a MINPACK: improper input parameters
exception. This is probably required because of a potentially ill posed problem in case this
doesn’t hold.

Dimitri R ic QuantLib Intro IT December 2010 59 / 148

m Generate 6 (z;,y;) pairs of a second order parabola
f(z) = a+ bz + ca?

by perturbing the f(z) values by some error term =e.

m Write an optimizer which accepts the 6 pairs and does a least square parabola fit to
these values.

m Check, how well the original variables a, b, c are approximated.

Dimitri R QuantLib Intro IT December 2010 60 / 148

Mathematical Tools

m Random Numbers

Fixed Income

=

Volatility Objects

=

Payoffs and Exercises

Black Scholes Pricer

-]

Stochastic Processes

QuantLib Intro IT December 2010 61 / 148

The basis for all random number machines is a basic generator which generates uniform
random numbers. Let X ~ UJ[0, 1] be such a uniform random variable. A random number for
any distribution can be generated by a transformation of X. This can be done by taking the
inverse cumulative distribution F~1 and evaluating F~1(X). Other algorithms transform X
to some other distribution without the cdf (e.g. Box Muller). There are several uniform
distribution generators in QuantLib

® KnuthUniformRng is the uniform random number generator by Knuth
m LecuyerUniformRng it the L’Ecuyer random number generator
B MersenneTwisterUniformRng is the famous Mersenne-Twister algorithm

Each of the constructors accepts a seed of type long which initializes the corresponding
deterministic sequence. The user can also request a random seed by calling the get() method
of an instance of the SeedGenerator class with SeedGenerator::instance().get(). The
SeedGenerator class is a singleton, which prevents any default and copy construction. Calling
SeedGenerator: :instance() .get () repeatedly yields a different seed. A sample from the given
generator can be obtained by calling

Sample<Real> next() const

Calling the function repeatedly returns new random numbers.

Dimitri R c QuantLib Intro IT December 2010 62 / 148

The Sample type is a template class located in
<ql/methods/montecarlo/sample.hpp>

Its basic construction is Sample<T>(T value, Real weight) with T being a template class. The
value and weight are public variables which can be accessed by the mySample.value or
mySample.weight operators respectively. In the code below we illustrate the setup for the
introduced random number generators.

void testingRandomNumbersi (){

BigInteger seed=SeedGenerator::instance().get();
std::cout << "Seed I: " << seed << std::endl;

MersenneTwisterUniformRng unifMt (seed);
LecuyerUniformRng unifLec(seed);
KnuthUniformRng unifKnuth(seed);

std::cout << "Mersenne Twister Un:" << unifMt.next ().value << std::endl;
std::cout << "Lecuyer Un:" << unifLec.next().value << std::endl;
std::cout << "Knut Un:" << unifKnuth.next().value << std::endl;

nstance ().get ();

" << std::endl;
ndl;
—————————————————————————— " << std::endl;
<< "Mersenne Twister Un:" << unifMt.next().value << std::endl;
<< "Lecuyer Un:" << unifLec.next().value << std::endl;
<< "Knut Un:" << unifKnuth.next().value << std::endl;

QuantLib Intro IT December 2010 63 / 148

The output of the program is

Seed 1: 873212726

Mersenne Twister Un:0.679093
Lecuyer Un:0.149121

Knut Un:0.874008

Seed 2: -2046984499

Mersenne Twister Un:0.72727
Lecuyer Un:0.0335365
Knut Un:0.584285

Note that your output will differ from this one since the seed will be different. A normal
random variable can for example be generated by setting up a

<RNG>BoxMullerGaussianRng(const RNG& uniformGenerator)

class which is the classical Box Muller algorithm. The template constructor accepts any of
the introduced uniform random number generators. The following example code below shows
a valid setup

Dimitri R ic QuantLib Intro IT December 2010 64 / 148

void testingRandomNumbers2 (){

BigInteger seed=12324;
MersenneTwisterUniformRng unifMt (seed);
BoxMullerGaussianRng<MersenneTwisterUniformRng> bmGauss (unifMt);

std::cout << bmGauss.next ().value <<
cout << bmGauss.next ().value <<
cout << bmGauss.next ().value <<
cout << bmGauss.next ().value <<
cout << bmGauss.next().value <<

}

The output of this code is

-1.17568
0.1411
1.56958
-0.0267368
-0.822068

In this case, you should receive the same output as the one shown above. Another class is the
CLGaussianRng random number generator, which uses the properties of the central limit
theorem.

QuantLib Intro IT December 2010 65 / 148

As already discussed, given a uniform random variable X, it is possible to generate any
random number by the evaluation of the inverse cumulative distribution function at X.
QuantLib provides the following template class to generate a sequence of random numbers
from the inverse cumulative distribution:

<class USG, class IC> class InverseCumulativeRsg (
const USG& uniformSequenceGenerator, const IC& inverseCumulative)

The uniform sequence generator can be any of the introduced generators, but needs to return
a sample sequence instead of a single sample. So, instead of

Sample<Real> next() const
the passed class needs to implement
Sample<std::vector<Real>> nextSequence() const
QuantLib offers the template class RandomSequenceGenerator with constructor

<RNG>RandomSequenceGenerator (Size dimensionality, const RNG& rng)

QuantLib Intro IT December 2010 66 / 148

To transform the standard Mersenne-Twister generator to a sequence generator we would
construct a RandomSequenceGenerator with

BigInteger seed=12324;
MersenneTwisterUniformRng unifMt (seed) ;
RandomSequenceGenerator<MersenneTwisterUniformRng> unifMtSeq(10,unifMt);

The passed inverse cumulative class needs to implement a
Real operator(const Real& x) const

operator. Although QuantLib offers some distribution functions, we will not use them here
but use the boost distributions instead. Boost offers more distributions at the current stage.
Another reason is that we would like to show the advantage of a template setup of the
QuantLib classes. This setup allows to easily incorporate other libraries in the QuantLib
framework. In the example below we will generate random numbers from the Fisher-Tippett
distribution, where the density is given as

e(a—x)/ﬁ—e(afﬂ/ﬁ
B

with location parameter o and scale parameter (3.

f(z) =

QuantLib Intro IT December 2010 67 / 148

In the current version, QuantLib does not provide an implementation of this distribution
class. However, we will once again use the bind class to construct a boost function which can
be passed as the const IC& inverseCumulative parameter. For example, the constructor of the
final random sequence generator can be constructed as

InverseCumulativeRsg<RandomSequenceGenerator<MersenneTwisterUniformRng>,
boost: :function<Real (Real)>> myEvInvMt(unifMtSeq,invEv);

where unifMtSeq is the uniform number sequence generator and invEv is the inverse Extreme
Value function which is passed as a boost function. The sequence can then be obtained by
calling

std::vector<Real> sample=myEvInvMt.nextSequence().value;

Example code is shown next.

QuantLib Intro IT December 2010 68 / 148

#include <boost/math/distributions.hpp>
#include <boost/function.hpp>

Real evInv(boost::math::extreme_value_distribution<> d, const Real& x){
return quantile(d,x);

¥

void testingRandomNumbers3 (){

boost::math::extreme_value_distribution<> d(0.0,0.1);
boost::function<Real (Real)> invEv=boost::bind(evInv,d,_1);

// Mersenne Twister setup

Biglnteger seed=12324;
MersenneTwisterUniformRng unifMt (seed);
// sequence setup

RandomSequenceGenerator <MersenneTwisterUniformRng> unifMtSeq(10,unifMt);
/7

InverseCumulativeRsg<RandomSequenceGenerator <MersenneTwisterUniformRng>,
boos function<Real (Real)>> myEvInvMt (unifMtSeq,invEv);

std::vector<Real> sample=myEvInvMt.nextSequence().value;
BOOST_FOREACH (Real x, sample) std::cout << x << std::emndl;

QuantLib Intro IT December 2010 69 / 148

The output of the code is

0.344719
0.122182
-0.0639099
0.0490113
0.134179
0.0353269
-0.0838453
0.0714751
0.0538163
0.18975

Dimitri R ic QuantLib Intro IT December 2010 70 / 148

An important class of number series is the class of quasi random numbers, also known as low
discrepancy numbers. QuantLib provides the following types

m LatticeRsg: lattice rule quasi random numbers
m FaureRsg: Faure quasi random numbers

m HaltonRsg: Halton

m SobolRsg: Sobol

The basic constructor is of the form
SomeQRGenerator myGen(Size dimension, optional parameters)
The numbers can be obtained in a vector via

Sample<std: :vector<Real>>nextSequence ()

QuantLib Intro IT December 2010 71 / 148

Example code with a setup of 5 dimensional Faure, Sobol and Halton uniform random
numbers is shown below

void testingRandomNumbers4 (){
Size dim=5;

SobolRsg sobolGen(dim);
HaltonRsg haltonGen(dim);
FaureRsg faureGen(dim);

std::vector<Real> sampleSobol (sobolGen.dimension()),
sampleHalton (haltonGen.dimension()),
sampleFaure (faureGen.dimension());

sampleSobol=sobolGen.nextSequence ().value;
sampleHalton=haltonGen.nextSequence ().value;
sampleFaure=faureGen.nextSequence ().value;

BOOST_FOREACH (Real x, sampleSobol) std::cout << "S:"” << x << std::endl;
BOOST_FOREACH (Real x, sampleHalton) std::cout << "H:" << x << std
BOOST_FOREACH (Real x, sampleFaure) std::cout << "F:” << x << std:

endl;

QuantLib Intro IT December 2010 72 / 148

The output is

a0 oo,

.621022
.841062
.61028
.75794
.813697

fea e Mo ey Biles Bit= =it = =it = = Jit= s Rt = = R V0 B /2 B /2 L 0 B V)
OO OO OO0 O0OO0OO0OO0O OO OO0

NN NN

Finally, we give an example of sample statistics by generating standard normal random
variables with pseudo- and quasi-random Sobol numbers. The mean, variance, skewness and
excess kurtosis are printed and compared. For the standard normal we expect the numbers
to be 0.0,1.0,0.0,0.0.

Dimitri R ic QuantLib Intro IT December 2010 73 / 148

void testingRandomNumbers5(){

SobolRsg sobolGen (1)

// Mersenne Twister setup
Biglnteger seed=12324;
MersenneTwisterUniformRng unifMt (seed);
BoxMullerGaussianRng<MersenneTwisterUniformRng> bmGauss (unifMt);

IncrementalStatistics boxMullerStat, sobolStat;
MoroInverseCumulativeNormal invGauss;

Size numSim=10000;
Real currSobolNum;

for(Size j=1;j<=numSim;++j){
boxMullerStat.add (bmGauss.next ().value);

currSobolNum=(sobolGen.nextSequence ().value) [0];
sobolStat.add(invGauss (currSobolNum));

¥
"BozMuller Mean:" << boxMullerStat.mean() << std::endl;
"BozMuller Var:" << boxMullerStat.variance() << std::endl;
"BoxMuller Skew:" << boxMullerStat.skewness() << st endl;
"BozMuller Kurtosis:" << boxMullerStat.kurtosis() << std::endl;

77777777777777777777777 " << std::endl;

"Sobol Mean:" << sobolStat.mean() << std::endl;

"Sobol Var:" << sobolStat.variance() << std::endl;
"Sobol Skew:" << sobolStat.skewness() << std::endl;
"Sobol Kurtosis:" << sobolStat.kurtosis() << std::endl;

QuantLib Intro IT December 2010 74 / 148

The output of the code is

BoxMuller Mean:0.00596648
BoxMuller Var:1.0166
BoxMuller Skew:0.0210064
BoxMuller Kurtosis:-0.0340477

Sobol Mean:-0.000236402
Sobol Var:0.998601

Sobol Skew:-7.74057e-005
Sobol Kurtosis:-0.0207681

which shows that the Sobol numbers are closer to the expected moments than
pseudo-random numbers. For illustration purposes we have used the Moro inverse cumulative
normal distribution implementation, which is available in QuantLib. Also, the moments were
calculated with the IncrementalStatistics class.

Dimitri R ic QuantLib Intro IT December 2010 75 / 148

Mathematical Tools

m Copulas

Fixed Income

=

Volatility Objects

=

Payoffs and Exercises

Black Scholes Pricer

-]

Stochastic Processes

QuantLib Intro IT December 2010 76 / 148

The QuantLib math section provides various 2— dimensional copulas such as the Gaussian-,
Gumbel-, Clayton or Independent-Copula. The constructor accepts the copula specific
parameters and the copula value is returned by the operator

operator() (Real x, Real y)

Example code is shown below

void testCopulas1 (){

GaussianCopula gaussCop (0.7);
GumbelCopula gumbCop(1.7);
Real x=0.7,y=0.2;

std::cout << "Gauss Copula:" << gaussCop(x,y) << std::endl;
std::cout << "Gumbel Copula:" << gumbCop(x,y) << std::endl;
}

The output is

Gauss Copula:0.194937
Gumbel Copula:0.186116

QuantLib Intro IT December 2010 77 / 148

1]

Mathematical Tools
m Integration

m Solver

m Exercise

m Interpolation

m Matrix

m Optimizer

m Exercise

m Random Numbers
m Copulas

Fixed Income

m Indexes

m Interest Rate

m Yield Curve Construction

Volatility Objects
m Smile Sections

Payoffs and Exercises

Black Scholes Pricer
m Black Scholes Calculator

Stochastic Processes

m Generalized Black Scholes Process
m Ornstein Uhlenbeck Process

m Heston Process

m Bates Process

Dimitri R ic QuantLib Intro IT

December 2010

78 / 148

The index classes are used for a representation of known indexes, such as the BBA Libor or
Euribor indexes. The properties can depend on several variables such as the underlying
currency and maturity. Imagine you are observing a 1 Month EUR Libor rate and you are
interested in the interest rate for a given nominal as well as the settlement details of a
contract based on this rate. The technical details are given on www.bbalibor.com. Going
through the details yields that

the rate refers to the Actual360() daycounter,

the value date will be 2 business days after the fixing date, following the TARGET
calendar,

the modified following business day convention is used,

if the deposit is made on the final business day of a particular calendar month, the

maturity of the deposit shall be on the final business day of the month in which it
matures (e.g. from 28th of February to 31st of March, not 28th of March)

These properties are different for 1 week rates. In addition, the conventions depend on the
underlying currency. Fortunately, you don’t have to specify these properties for most of the
common indexes as they are implemented in QuantLib.

QuantLib Intro IT December 2010 79 / 148

For example, you can initialize a EURLiboriM index with a default constructor. This index
inherits from the IborIndex class, which inherits from the InterestRateIndex class. The classes
offer several functions such as

std::string name()
Calendar fixingCalendar ()
DayCounter& dayCounter ()
Currency& currency()
Period tenor()

BusinessDayConvention businessDayConvention()

Example code is shown below

void testingIndexesl (){

EURLibor1M index;

t:cout << "Name:" << index.familyName () << std::endl;

cout << "BDC:"<< index.businessDayConvention() << std::endl;
cout << "End of Month rule?:"<< index.endOfMonth () << std::endl;
cout << "Tenor:" << index.tenor () << std::endl;

cout << "Calendar:" << index.fixingCalendar() << std::endl;
std::cout << "Day Counter:" << index.dayCounter () << std::endl;
std::cout << “Currency:" << index.currency() << std::endl;

QuantLib Intro IT December 2010

80 / 148

The output is

Name : EURLibor

BDC:Modified Following

End of Month rule?:1

Tenor:1M

Calendar:JoinBusinessDays(London stock exchange, TARGET)
Day Counter:Actual/360

Currency:EUR

The returned properties are consistent with the ones published on the BBA site. Such an
index is needed as an input parameter in several constructors, in particular the yield curve
construction helpers, which need the exact properties of the rates. The specification of the
rate index class allows for a compact definition of other constructors. Imagine that you have
to construct a class with different Libor and Swap rates. Such a constructor would become
large if all corresponding rate properties would be provided to the constructor. With the
index classes, this is not a problem. Other indexes are available, for example the ISDA swap
index EurLiborSwapIsdaFixA or the BMAIndex. See the QuantLib documentation for details.

Dimitri R ic QuantLib Intro IT December 2010 81 / 148

Mathematical Tools

Fixed Income

=

m Interest Rate

Volatility Objects

=

Payoffs and Exercises

Black Scholes Pricer

-]

Stochastic Processes

Dimitri R c QuantLib Intro IT December 2010 82 / 148

The definition of the InterestRate class is given in <ql/interestrate.hpp>. The class represents
the properties of various yield types, the constructor is given as

InterestRate (Rate r,
const DayCounter& dc = Actual365Fixed(),
Compounding comp = Continuous,
Frequency freq = Annual);

The class provides standard functions to return the passed properties via

® Rate rate()
m const DayCounter& dayCounter ()
= Compounding compounding()
®m Frequency frequency()
Also, discount, compounding factors and equivalent rates can be calculated with
® DiscountFactor discountFactor(const Date& dil, const Date& d2)
®m Real compoundFactor(const Date& di, const Date& d2)

®m Rate equivalentRate(Date di,Date d2, const DayCounter& resultDC,
Compounding comp, Frequency freq=Annual)

The compound and discount functions allow to adjust for different reference dates (option for
Actual/Actual day counters). Also, all functions above are implemented with a Time instead
of two date variables.

QuantLib Intro IT December 2010 83 / 148

The rate type can be specified with the Compounding enumeration. The implemented rate
types are

® Simple, 1 4+ 77
m Compounded, (1 +)7
m Continuous, €'
The frequency can be specified to
m NoFrequency null frequency
m Once only once, e.g., a zero-coupon
® Annual once a year
m Semiannual twice a year
m EveryFourthMonth every fourth month
® Quarterly every third month
® Bimonthly every second month
® Monthly once a month
m EveryFourthWeek every fourth week
m Biweekly every second week

m Weekly once a week

m Daily once a day

QuantLib Intro IT December 2010 84 / 148

Furthermore, a static function is provided which extracts the interest rate of any type from a
compound factor.

m InterestRate impliedRate(Real compound, const Date& dl, const Date& d2,
const DayCounter& resultDC, Compounding comp, Frequency freq = Annual)

This function is used by the yield curve classes which will be introduced later. Example code
is shown below. The example shows the setup of an interest rate with a calculation of the
compound/discount factors and the calculation of the equivalent semi-annual continuous
rate. Given the compound factor, we extract the original rate with the impliedRate function.

void testingYieldst(){

DayCounter dc=ActualActual();
InterestRate myRate (0.0341, dc, Simple, Annual);

std::cout << "Rate: " << myRate << std::endl;
Date d1(10,Sep,2009), d2=d1+3xMonths;

Real compFact=myRate.compoundFactor (dl,d2);
std::cout << "Compound Factor:" << compFact << std::endl
std::cout << "Discount Factor:" << myRate.discountFactor(dl,d2) << std::endl;
std::cout << "Equivalent Rate:" << myRate.equivalentRate(d1,d2,
dc,Continuous ,Semiannual) << std::endl;

Real implRate=InterestRate::impliedRate (compFact,dl,d2,dc,Simple,Annual);
std::cout << "Implied Rate from Comp Fact:" << implRate << std::endl;

QuantLib Intro IT December 2010 85 / 148

The output of the function is

Rate: 3.410000 % Actual/Actual (ISDA) simple compounding

Compound Factor:1.0085

Discount Factor:0.99157

Equivalent Rate:3.395586 % Actual/Actual (ISDA) continuous compounding
Implied Rate from Comp Fact:0.0341

QuantLib Intro IT December 2010 86 / 148

Mathematical Tools

Fixed Income

=

m Yield Curve Construction

Volatility Objects

=

Payoffs and Exercises

Black Scholes Pricer

-]

Stochastic Processes

QuantLib Intro IT December 2010 87 / 148

There are various ways to construct a market consistent yield curve. The methodology
depends on the liquidity of available market instruments for the corresponding market.
Several choices have to be made; the interpolation procedure and the choice of the market
instruments have to be specified. QuantLib allows to construct a yield curve as a

m InterpolatedDiscountCurve, construction given discount factors

m InterpolatedZeroCurve, construction given zero coupon bond rates
m InterpolatedForwardCurve, construction given forward rates

m FittedBondDiscountCurve, construction given coupon bond prices

m PiecewiseYieldCurve, piecewise construction given a mixture of market instruments (i.e.
deposit rates, FRA /Future rates, swap rates).

We will discuss the first and last case here. The other cases are equivalent. Interested readers
should take a look at the other useful term structures, such as the QuantoTermStructure or
InflationTermStructure. It should be noted that the classes above derive from general abstract
base classes, which can be used by the user in case she is interested in own yield curve
implementations. All of the above constructors derive from the base class YieldTermStructure.
The YieldTermStructure class derives from TermStructure, which is both, an Observer and
Observable. This base class implements some useful functions. For example, functions are
implemented which return the reference date, day counter, calendar, the minimum or
maximum date for which the curve returns yields.

QuantLib Intro IT December 2010 88 / 148

YieldTermStructure has the following public functions which are inherited by the previously
introduced classes

m DiscountFactor discount(const Date& d, bool extrapolate = false), also available with Time
instead of Date input. Extrapolation can be enabled optionally.

m InterestRate zeroRate(const Date& d, const DayCounter& resultDayCounter,
Compounding comp,Frequency freq = Annual,bool extrapolate = false), also available with
Time input.

m InterestRate forwardRate(const Date& d1,const Date& d2,const DayCounter& dc,
Compounding comp, Frequency freq = Annual, bool extrapolate = false), also available with
Time input.

®m Rate parRate(const std::vector<Date>& dates, const DayCounter& dc,

Frequency freq = Annual, bool extrapolate = false) returns the par rate for a bond which
pays on the specified dates.

All of the concrete yield classes derive from YieldTermStructure and thus inherit automatically
the functions above. The only function that they have to implement is the pure virtual
discountImpl(Time) function. Given the discount factor, all other rates can be derived. This
allows for a convenient implementation of an own yield curve, without bothering about the
calculations of the different rate types.

QuantLib Intro IT December 2010 89 / 148

We will treat the InterpolatedDiscountCurve first. This construction procedure is suited for
quotes such as the one given below on Reuters: a given set of discount factors is assigned to
corresponding maturities. We have cut the discount factors beyond the maturity of 2 years
for illustration purposes.

EUR Yield Discount

TH 0,3148 0.9999656 14:40
1w 0.3083 0.9999072 14:40
1M 0.4225 0.9996074 14:40
2M 0.5443 0.9990040 14:40
3M 0.7242 0.9981237 14:40
6M 0.9614 0.9951358 14:40
9IM 0.9372 0.9929456 14:40
1Y 1.0006 0.9899849 14:40
1Y3M 1.1120 0.9861596 14:40
1Y6M M 1.2457 0.9815178 14:40
1Y9M M 1.4358 0.9752363 14:40
2Y 1.6263 0.9680804 14:40

Figure: Reuters Discount Factor

QuantLib Intro IT December 2010 90 / 148

The only object that we have to specify for the InterpolatedDiscountCurve is the interpolation
type between the discount factors. For example, a common choice is the LogLinear
interpolation, which interpolates linearly in the rates. The constructor accepts the vectors
with the discount factors and dates. The first date has to be the reference of the discount
curve, e.g. the date with discount factor 1.0! The constructor has the following
implementation

InterpolatedDiscountCurve (
const std::vector<Date>& dates,
const std::vector<DiscountFactor>& dfs,
const DayCounter& dayCounter,

const Calendar& cal = Calendar(),

const std::vector<Handle<Quote> >& jumps = std::vector<Handle<Quote> >(),
const std::vector<Date>% jumpDates = std::vector<Date>(),

const Interpolator& interpolator = Interpolator ());

The constructors shows that jumps and jump times can be handed over, although this is
optional. Jumps have to be a number in [0, 1] and shift the whole yield curve downwards by
the corresponding factor at the given date. For example, the yield curve can be shifted to be
98% of the original market curve after 3 months of the reference date. And again to 98% of
the shifted curve after 4 months.

QuantLib Intro IT December 2010 91 / 148

In the following example, we construct a yield curve based on the Reuters discount factors
introduced before.

void testingYields2(){
std::vector<Date> dates;
std::vector<DiscountFactor> dfs;

Calendar cal= TARGET ();

Date today(11,Sep,2009);
EURLiboriM 1libor;

DayCounter dc=libor.dayCounter ();

Natural settlementDays = 2;
Date settlement = cal.advance(today,settlementDays,bDays);

dates.push_back(settlement); dates.push_back(settlement+1ixDays);
dates.push_back(settlement+il*Weeks);dates.push_back(settlement+1xMonths);
dates.push_back(settlement+2*Months);dates.push_back(settlement+3*Months);
dates.push_back(settlement+6*Months);dates.push_back(settlement+9*Months);
dates.push_back(settlement+1*Years);dates.push_back(settlement+1*Years+3*Months);
dates.push_back(settlement+1*Years+6*Months); dates.push_back(settlement+1*Years+9*Months);
dates.push_back(settlement+2*Years);

dfs.push_back(1.0); dfs.push_back (0.9999656) ;
dfs.push_back (0.9999072); dfs.push_back (0.9996074)
dfs.push_back(0.9990040); dfs.push_back(0.9981237);
dfs.push_back(0.9951358); dfs.push_back (0.9929456);
dfs.push_back(0.9899849); dfs.push_back(0.9861596); //
dfs.push_back(0.9815178); dfs.push_back(0.9752363);
dfs.push_back (0.9680804);

Date tmpDate1=settlement+1*‘{ears +3xMonths;
InterpolatedDiscountCurve <Loglinear> curve(dates,dfs,dc,cal);

std::cout << "Zero Rate: " << curve.zeroRate(tmpDatel, dc, Simple, Annual) << std::endl;

std::cout << "Discount: " << curve.discount(tmpDatel) << std::endl;

Date tmpDate2=tmpDatel+3*Months;

std::cout << "1Y3M-1Y6M Fud Rate: " << curve.forwardRate (tmpDatel,tmpDate2,dc,Continuous) << std::endl;

QuantLib Intro IT December 2010 92 / 148

After the construction of the yield curve, we ask for a zero-rate, a discount factor and a
forward rate for given dates. The output after calling this function is shown below

Zero Rate: 1.107998 % Actual/360 simple compounding
Discount: 0.98616
1Y3M-1Y6M Fud Rate: 1.887223 J Actual/360 continuous compounding

Dimitri R ic QuantLib Intro IT December 2010 93 / 148

This section will focus on the piecewise construction of the yield curve. This means, that we
will use a particular class of market instruments to construct a piece of a yield curve. For
example, deposit rates can be used for maturities up to 1 year. Forward Rate Agreements
can be used for the construction of the yield curve between 1 and 2 years. Swap rates can be
used for the residual maturities. The final result is a single curve which is consistent with all
quotes.

The choice of the instruments and maturities depends on the liquidity. In the following
example, we will construct a USD yield curve with USD Libor rates for maturities up to -
and including- 1 year. For maturities above 1 year and up to -and excluding- 2 years we will
use 3 month FRA rates. For larger maturities, we will use ISDA Fix swap rates, the
specification of these instruments can be found on http://www.isda.org/fix/isdafix.html. The
corresponding Reuters screens which we will use for our construction are shown next.

Dimitri R QuantLib Intro IT December 2010 94 / 148

Deposit rates on Reuters

_ ol x|
to-usoBor - Qo O S AR e |[B|lEO =8 4 D
—— BB4 LTEOR Lms visrLs
USD 14/09/09 DEALING

oH o0 21875 BEA LoN 12:44

su 0, 24063 BEA LON 12:44

2 0, 24375 EE LON 12:44

1 0, 24375 BEA LON 12:44

2 0. 25813 BEA LON 12:44

M 0, 29968 BEA LON 12:44

an 0, 42438 EE LON 12:44

sm 0, 59125 EE LON 12:44

oM 0. 68250 EE LON 12:44

n 0. 79125 EE LON 12144

8 0, 89750 aBA LON 12144

an 0, 99750 EE LON 12:44

10M 108125 EE LON 12:44

114 1 16625 aBA LON 12144

1 1 26125 aBA LON 12144

Figure: USD Libor Rates

QuantLib Intro IT December 2010 95 / 148

FRA rates on Reuters

USD3MFRA

=lolx]

to-uomm v Qd s AR @Blao|=e s D
— USD_3M_FRA Lowe e MONEY
usp DEALING
1X4 0.325 0.400 INTESA MIL BCIT 11:41
2X5 0. 368 0.388 BROKER GF3 11:40
w6 [0.395 0.445 INTESA, MIL BCIT | 1141
4x7 0. 450 0.470 BROKER GF3 11:30
5x8 [0.526 0.546 EROKER GFX 11140
6X9 j0. 590 0.610 BROKER GFX 11:40
7X10 0. 692 0.712 BROKER GF3 11:40
8X11 0. 805 0.825 BROKER GF3 11:40
oxiz [0, 904 0.924 EROKER GFX 11140
12X15 IL.267 1.287 BROKER GFX 11:40
15X18 IL.es0 1.670 BROKER GF3 11:40
18x21 [2.013 2.083 EROKER GFX 11140
21X24 2. 361 2.381 BROKER GF3 11:40

Figure: USD FRA Rates

QuantLib Intro IT December 2010 96 / 148

Swap rates on Reuters

- 0] x|
t0 v usosrix= v Q W S .\'Aﬁca“‘>'||ﬂﬂ‘°z%|ﬁ"ﬂ#
— USD_ISDA FIX woveen wswws TSDAOL

RATES COLLECTED BY RELTERS AND GARBAN ICAP PLC

usp SA30/360 IMLIBOR DEALING
1¥ 0,572 17:30
2v 1.226 17:30
I 1.846 17:30
av 2,324 17:30
5Y 2.678 17:30
6 2. 953 17:30
7Y 2,180 17:30
sy 2. 240 17:30
ay 3. 474 17:30
10v 2588 17:30
15¥ 2. 016 17:30
207 4. 029 17:30
307 4,100 17:30

Figure: USD Swap Rates

QuantLib Intro IT December 2010 97 / 148

QuantLib allows to incorporate the piecewise construction by using rate helpers which are
summarized in

<ql/termstructures/yield/ratehelpers.hpp>
The piecewise yield curve constructor will accept a
std:vector<boost::shared_ptr<RateHelper>>

object which stores all market instruments. The following rate helpers are available
m FuturesRateHelper
m DepositRateHelper
m FraRateHelper
m SwapRateHelper
= BMASwapRateHelper (Bond Market Association Swaps)

Different constructors are available for each rate helper, where all relevant properties can be
specified. We will not introduce all of them here, but choose the compact constructors which
use the Index classes introduced before. Instead of specifying the deposit properties by hand
(e.g. business day convention, day counter...) we will specify the index where all properties
are implemented automatically.

QuantLib Intro IT December 2010 98 / 148

For example, one constructor for the DepositRateHelper is available as

DepositRateHelper (const Handle<Quote>& rate,
const boost::shared_ptr<IborIndex>& iborIndex);

To set up a rate helper we need to set up a Handle for the rate and a corresponding index.
The following example shows such a setup for the USD curve case for all three rate types.
The number of quotes will be restricted to 3, the other quote setups are equivalent. There is
a lot of code needed for the setup of all rates. However, this will most likely be implemented
once in a large system.

Dimitri R c QuantLib Intro IT December 2010 99 / 148

The other are implemented equivalently and we assume for the following example that the
rate helper vector is returned by a function

std::vector<boost::shared_ptr<RateHelper>> getRateHelperVector ()

The first constructor for the piecewise yield curve is given below

PiecewiseYieldCurve (
const Date& referenceDate,
const std::vector<boost::shared_ptr<typename Traits::helper> >& instruments,
const DayCounter& dayCounter,

const vector <Handle<Quote> >& jumps = std::vector<Handle<Quote> >(),
const vector<Date>& jumpDates = std::vector<Date>(),

Real accuracy = 1.0e-12,

const Interpolator& i = Interpolator(),

const Bootstrap<this_curve>& bootstrap = Bootstrap<this_curve>())

The constructor has 3 template types called Traits, Interpolator,

Bootstrap = IterativeBootstrap. The third template specifies the boot strapping procedure
with a default boot strapper. The first parameter specifies the rate type which should be
created by the curve. The second parameter specifies the interpolation procedure on this rate

type.

QuantLib Intro IT December 2010 100 / 148

A second constructor is available as

PiecewiseYieldCurve (
Natural settlementDays,

const Calendar& calendar,

const std::vector<boost::shared_ptr<typename Traits::helper> >& instruments,
const DayCounter& dayCounter,

const std::vector<Handle<Quote> >& jumps = std::vector<Handle<Quote> >(),
const std::vector<Date>% jumpDates = std::vector<Date>(),

Real accuracy = 1.0e-12,

const Interpolator& i = Interpolator(),

const Bootstrap<this_curve>& bootstrap = Bootstrap<this_curve>())

This parameter doesn’t have a fixed date, since the reference date is internally given by
Settings::instance.valuationDate(). The number of days to settlement has to be provided
with settlementDays. This constructor observers the valuation date, such that it updates
whenever the date changes. The constructor will be used with the first 4 parameters most of
the time, so don’t worry about the other parameters for the moment. The next example
shows the usage of the first constructor.

QuantLib Intro IT December 2010 101 / 148

#include "YieldCurve6.h"
void testingYields4 (){
std::vector<boost::shared_ptr<RateHelper>> instruments=getRateHelperVector ()
Calendar calendar = TARGET ()
Date today(11,Sep,2009);
Natural settlementDays = 2;
Date settlement = calendar.advance(today,settlementDays,Days);

std::cout << "Settlement Date:" << settlement << std::endl;

DayCounter dc=Actual360();
boost::shared_ptr<YieldTermStructure> yieldCurve;

yieldCurve = boost::shared_ptr<YieldTermStructure>(new
PiecewiseYieldCurve<ZeroYield,Linear>(settlement ,instruments, dc));

Date di=settlement+i*Years,d2=di+3*Months;

std::cout << "Zero 3M: " << yieldCurve->zeroRate(settlement+3*Months,dc,Simple)
std::cout << "Zero 6M: " << yieldCurve->zeroRate(settlement+6*Months ,dc,Simple)
std::cout << "Zero 9M: " << yieldCurve->zeroRate(settlement+9*Months ,dc,Simple)
std::cout << "12zx15 Fuwd: " << yieldCurve->forwardRate(dl,d2,dc,Simple)<< std ndl;

std::cout << "15x18 Fuwd:
// Check swap rate
Handle<YieldTermStructure> ycHandle(yieldCurve);
// 1SDA swap is vs 3 month libor, set this up
boost::shared_ptr<IborIndex> libor3m(new USDLibor (Period(3,Months),ycHandle));
// set up a 8y ISDA swap, just to have references to all properties
boost::shared_ptr<SwapIndex> swap8yIndex(new UsdLiborSwapIsdaFixAm(Period(8,Years)));
// comstruct a vanilla swap
VanillaSwap swap = MakeVanillaSwap (Period(8,Years),libor3m)
.withEffectiveDate(settlement)
.withFixedLegConvention (swap8yIndex->fixedLegConvention ())
.withFixedLegTenor (swap8yIndex->fixedLegTenor ());

<< yieldCurve->forwardRate (d2,d2+3*Months ,dc,Simple)<< std::endl;

std::cout << "8Y Swap:" << swap.fairRate() << std::endl;

QuantLib Intro IT December 2010 102 / 148

The instance was constructed as a ZeroRate curve which is linearly interpolated. To test
whether the construction was successful, we print some zero and forward rates. Also, we set
up a vanilla swap with the built curve to test whether the swap rate can be recovered. Don’t

worry about the vanilla swap details for the moment. They will be introduced later. The
output of the function is

Settlement Date:September 15th, 2009

Zero 3M: 0.299690 % Actual/360 simple compounding
Zero 6M: 0.682500 7 Actual/360 simple compounding
Zero 9M: 0.997500 % Actual/360 simple compounding
12x15 Fwd: 1.267000 % Actual/360 simple compounding
15x18 Fwd: 1.650000 % Actual/360 simple compounding
8Y Swap:0.0334

It can be verified that the Reuters rates are recovered correctly.

Dimitri R ic QuantLib Intro IT December 2010 103 / 148

Mathematical Tools

Fixed Income

=

Volatility Objects
m Smile Sections

=

Payoffs and Exercises

Black Scholes Pricer

-]

Stochastic Processes

QuantLib Intro IT December 2010 104 / 148

The InterpolatedSmileSection class represents a single volatility slice which is mapped to a
fixed time to maturity. This is a template class with respect to the interpolator. However,
the current version is suboptimal since the template class has to be a factory of a
Interpolator object which implements the interpolate functions. The class accepts a grid of
total volatilities o(K)+/7 and strikes and interpolates values which are not part of the grid.
Below we show two constructors which use quote handles. The class has equivalent versions
with simple Real objects

InterpolatedSmileSection (
Time expiryTime,
const std::vector<Rate>& strikes,
const std::vector<Handle<Quote> >& stdDevHandles,
const Handle<Quote>& atmLevel,
const Interpolator& interpolator = Interpolator(),
const DayCounter& dc = Actual365Fixed());

InterpolatedSmileSection (
const Date& d,
const std::vector<Rate>& strikes,
const std::vector<Handle<Quote> >& stdDevHandles,
const Handle<Quote>& atmLevel,
const DayCounter& dc = Actual365Fixed(),
const Interpolator& interpolator = Interpolator(),
const Date& referenceDate = Date());

QuantLib Intro IT December 2010 105 / 148

The first constructor accepts a time to maturity. This encapsulates the calculation such that
the user can provide a variable calculated with his own algorithm. The second constructor
accepts a date and a reference date, which is an optional variable. If the reference date is not
given, the global evaluation date in Settings will be used. The time to maturity is then
calculated with the provided day counter. We note again that the constructors are based on
7 and not simply o. The following functions are provided by the InterpolatedSmileSection

B Real variance(Rate strike) returns UQ(K)T
B Volatility volatility(Rate strike) returns o(K)
B Real minStrike () returns the minimum strike in the strike grid
B Real maxStrike() returns the maximum strike
® Real atmLevel() returns the at-the-money value o a7 Vtau
In the following example we will construct a smile section using cubic interpolation. We will

then check if the volatility is returned correctly at one of the strike grid points. Then, the
volatility at some different strike is calculated.

Dimitri R QuantLib Intro IT December 2010 106 / 148

void testingVolatilityObjects1 (){
Time tau=0.45,st=std::sqrt(tau);

std::vector<Rate> strikes(6);
strikes [0]=78.0; strikes [1]=88.0; strikes [2]1=98.0;
strikes [3]=108.0; strikes [4]=118.0; strikes [5]1=128.0;

boost ::shared_ptr<Quote> ql(new SimpleQuote (0.2406%st)); Handle<Quote> hi(ql);

::shared_ptr<Quote> q2(new SimpleQuote (0.2213*st)); Handle<Quote> h2(q2);
:shared_ptr<Quote> q3(new SimpleQuote(0.2102%st)); Handle<Quote> h3(q3);
shared_ptr<Quote> q4(new SimpleQuote (0.2156*st)); Handle<Quote> h4(q4);
shared_ptr<Quote> g5(new SimpleQuote (0.2299*st)); Handle<Quote> h5(g5);
:shared_ptr<Quote> q6(new SimpleQuote (0.2501%st)); Handle<Quote> h6(q6);

std::vector<Handle<Quote>> volVec(strikes.size());
volVec [0]=h1; volVec[1]=h2; volVec[2]=h3; volVec[3]=h4; volVec[4]=h5; volVec[5]=h6;

InterpolatedSmileSection<Cubic> smileSect (tau,strikes,volVec,h3);
Real K1=88.0, K2=93.0;

"Min strike:" << smileSect.minStrike() << std ndl;

"Maz strike:" << smileSect.maxStrike() << std::endl;

"Atm wol:" << smileSect.atmLevel() << std::endl;

"Volatility at K1:" << smileSect.volatility (K1) << std::endl;
"Variance at K1:" << smileSect.variance (K1) << std::endl;
"Volatility at K2:" << smileSect.volatility(K2) << std::endl;
"Variance at K2:" << smileSect.variance(K2) << std::endl;

QuantLib Intro IT December 2010 107 / 148

The output of the function is

Min strike:78

Max strike:128

Atm vo0l:0.141006
Volatility at K1:0.2213
Variance at K1:0.0220382
Volatility at K2:0.213988
Variance at K2:0.0206059

As expected, the correct volatility is returned for the strike 88.0.

Dimitri R ic QuantLib Intro IT December 2010 108 / 148

Modelling the whole volatility surface can be done with the BlackVarianceSurface class which
has the constructor below. This is not a template class, but the type of the 2D interpolation
can be set with the setInterpolation(const Interpolator& i) template function. The
constructor needs a volatility matrix. Also, the type of the strike extrapolation can be chosen
depending on the extrapolation to the left of the minimum strike (lower extrapolation) or to
the right of the maximum strike (upper extrapolation). The extrapolation types can be
ConstantExtrapolation or the default extrapolation of the interpolator
InterpolatorDefaultExtrapolation. The default interpolation is BiLinear

BlackVarianceSurface (const
const
const
const
const
const

Date& referenceDate,
Calendar& cal,
std::vector<Date>& dates,
std::vector<Real>& strikes,
Matrix& blackVolMatrix,
DayCounter& dayCounter,

Extrapolation lowerExtrapolation =
InterpolatorDefaultExtrapolation,

Extrapolation upperExtrapolation =
InterpolatorDefaultExtrapolation);

QuantLib Intro IT December 2010 109 / 148

Important class functions are

B Real minStrike()

B Real maxStrike()

m Date maxDate()

® void setInterpolation(const Interpolator& i)

m Volatility blackVol(const Date& maturity, Real strike, bool extrapolate) also available
with a Time variable

B Real blackVariance(const Date& maturity, Real strike, bool extrapolate), also available
with a Time variable

The next example shows a volatility surface construction with an example of how to change
the interpolation method.

QuantLib Intro IT December 2010 110 / 148

#include <boost/assign/std/vector.hpp>
void testingVolatilityObjects2(){

DayCounter dc=ActualActual ();
Calendar eurexCal=Germany (Germany::Eurex);

using namespace boost::assign;

Date settlementDate (27, Sep, 2009);
settlementDate=eurexCal.adjust (settlementDate);

std::vector<Date> dateVec;

std::vector<Size> days;
days+=13,41,75,165,256,345,524,703;

for (Size i=0;i<days.size();++i){
dateVec.push_back(settlementDate+days[i]l*Days);
}

std::vector<Real> strikes;
strikes+=100,500,2000,3400,3600,3800,4000,4200,4400,4500,
4600,4800,5000,5200,5400,5600,7500,10000,20000,30000;

std::vector<Volatility> v;

v+=1.0156873, 1.015873, 1.015873, 0.89729, 0.796493, 0.730914, 0.631335, 0.568895,
0.711309, 0.711309, 0.711309, 0.641309, 0.635593, 0.583653, 0.508045, 0.463182,
0.516034, 0.500534, 0.500534, 0.500534, 0.448706, 0.416661, 0.375470, 0.353442,
0.516034, 0.482263, 0.447713, 0.387703, 0.355064, 0.337438, 0.316966, 0.306859,
0.497587, 0.464373, 0.430764, 0.374052, 0.344336, 0.328607, 0.310619, 0.301865,
0.479511, 0.446815, 0.414194, 0.361010, 0.334204, 0.320301, 0.304664, 0.297180,
0.461866, 0.429645, 0.398092, 0.348638, 0.324680, 0.312512, 0.299082, 0.292785,
0.444801, 0.413014, 0.382634, 0.337026, 0.315788, 0.305239, 0.293855, 0.288660,
0.428604, 0.397219, 0.368109, 0.326282, 0.307555, 0.298483, 0.288972, 0.284791,
0.420971, 0.389782, 0.361317, 0.321274, 0.303697, 0.295302, 0.286655, 0.282948,
0.413749, 0.382754, 0.354917, 0.316532, 0.300016, 0.292251, 0.284420, 0.281164,
0.400889, 0.370272, 0.343525, 0.307904, 0.293204, 0.286549, 0.280189, 0.277767,
0.390685, 0.360399, 0.334344, 0.300507, 0.287149, 0.281380, 0.276271, 0.274588,
0.383477, 0.353434, 0.327580, 0.294408, 0.281867, 0.276746, 0.272655, 0.271617,
0.379106, 0.349214, 0.323160, 0.289618, 0.277362, 0.272641, 0.269332, 0.268846,
0.377073, 0.347258, 0.320776, 0.286077, 0.273617, 0.269057, 0.266293, 0.266265,
0.399925, 0.369232, 0.338895, 0.289042, 0.265509, 0.255589, 0.249308, 0.249665,

BT T A — QuantLib Intro I December 2010 111 / 148

The output of the function is

Bilinear Interpolation:0.376773
Bicubic Interpolation:0.380937

Dimitri R c QuantLib Intro IT December 2010 112 / 148

Mathematical Tools
m Integration

m Solver

m Exercise

m Interpolation

m Matrix

m Optimizer

m Exercise

m Random Numbers
m Copulas

Fixed Income

m Indexes

m Interest Rate

m Yield Curve Construction

Volatility Objects
m Smile Sections

Payoffs and Exercises

Black Scholes Pricer
m Black Scholes Calculator

Stochastic Processes

m Generalized Black Scholes Process
m Ornstein Uhlenbeck Process

m Heston Process

m Bates Process

Dimitri R ic QuantLib Intro IT

December 2010

113 / 148

Every pricing engines needs a payoff which underlies the derivative instrument. The payoffs
are derived from the abstract Payoff class which is located in <ql/payoff.hpp>. The class has a
name and description function which return the respective properties as a std::string object.
The payoff is returned by passing the price to the operator

® Real operator() (Real price)

The derived payoff classes can be found in <ql/instruments/payoffs.hpp>. Most of the payoffs
have a given strike. Consequently, a base class StrikedTypePayoff is provided. Descendants of
this class are

® PlainVanillaPayoff: represents the payoff of a plain vanilla call or put
max{¢(St — K), 0}

with ¢ =1 for a call and ¢ = —1 for a put.
m PercentageStrikePayoff
max{¢(ST —mSt),0}
with m being a percentage or moneyness variable such as 1.10. This can be useful for
Cliquet payoffs where the future asset value is taken as the strike reference.
m AssetOrNothingPayoff
Stlssr>eK
B CashOrNothingPayoff
Closr>ex

with C being the cash amount.

Dimitri R QuantLib Intro IT December 2010 114 / 148

B GapPayoff pays
max{qS(ST - Kg), O}H¢STZ¢K1
The constructors of the payoff classes are straightforward. For example, the plain vanilla
payoff can be constructed as
® PlainVanillaPayoff (Option::Type type,Real strike)

In the example program below, we will construct the payoffs for various option types and
print out the payoffs for a concrete parameter set.

Dimitri R c QuantLib Intro IT December 2010 115 / 148

void testingBsPricingEngines1 (){
Real S0=100.0, ST=123;
Real K1=105.0, K2=112.0;
Real moneyness=1.10, cash=10.0;

PlainVanillaPayoff vanillaPayoffCall(Option::Call,K1);
PlainVanillaPayoff vanillaPayoffPut (Option::Put,K1);

/7

PercentageStrikePayoff percentagePayoffCall(Option::Call,moneyness);
PercentageStrikePayoff percentagePayoffPut (Option::Put,moneyness);
/7

AssetOrNothingPayoff aonPayoffCall (Option::Call,K1);
AssetOrNothingPayoff aonPayoffPut (Option::Put,Ki);

//

CashOrNothingPayoff conPayoffCall(Option::Call,K1,cash);
CashOrNothingPayoff conPayoffPut(Option::Put,Ki,cash);

/7

GapPayoff gapPayoffCall(Option::Call,K1,K2);

GapPayoff gapPayoffPut (Option::Put,K1,K2)

"S(0):" << 80<< ", S(T):" << ST << std::endl;

"Strike:" << K1 << std::endl;

"Gap Strike:" << K2 << ", Moneyness Strike:"<<moneyness*S0 << std::endl;
"Vanilla Call Payout:" << vanillaPayoffCall(ST) << std::endl;

"Vanilla Put Payout:" << vanillaPayoffPut(ST) << std::endl;

"Percentage Call Payout:" << percentagePayoffCall(ST) << std::endl;
"Percentage Put Payout:" << percentagePayoffPut(ST) << std::endl;

"AON Call Payout:" << aonPayoffCall(ST) << std::endl;

“AON Put Payout:" << aonPayoffPut(ST) << std::endl;
“CON Call Payout:" << conPayoffCall(ST) << std::endl
"CON Put Payout:" << conPayoffPut(ST) << std::endl;
"Gap Call Payout:" << gapPayoffCall(ST) << std::endl

"Gap Put Payout:" << gapPayoffPut(ST) << std::endl;

QuantLib Intro IT December 2010 116 / 148

The output

of the function is

S(0):100, S(T):123
Strike:105

Gap

Strike:112

Vanilla Call Payout:18
Vanilla Put Payout:0
Percentage Call Payout:0
Percentage Put Payout:12.3

AON
AON
CON
CON
Gap
Gap

Call Payout:123
Put Payout:0
Call Payout:10
Put Payout:0
Call Payout:11
Put Payout:0

QuantLib Intro IT

December 2010

117 / 148

Another instrument property is its exercise. For example, a vanilla call might be exercised at
maturity, on a set of discrete dates (Bermudan exercise) or any time (American exercise).
This is modelled by the Exercise class which can be found in

<ql/exercise.hpp>

Concrete exercise types are derived from the Exercise base class. The currently available
classes are

® AmericanExercise

m BermudanExercise

B EuropeanExercise

QuantLib Intro IT December 2010 118 / 148

Example constructors for some classes are given below

m EuropeanExercise(const Date& date) where the date of the exercise has to be provided

® AmericanExercise(const Date& earliestDate, const Date& latestDate, bool payoffAtExpiry):
here, a boolean variable can be set which indicates if the payout is done immediately or
at maturity

B BermudanExercise(const std::vector<Date>% dates, bool payoffAtExpiry = false): here a
vector of exercise dates has to be provided

QuantLib Intro IT December 2010 119 / 148

Black Scholes Pricer
m Black Scholes Calculator

QuantLib Intro IT December 2010 120 / 148

The heart of any pricing engine is a class which returns the standard Black-Scholes formula
as well as the corresponding Greeks. The corresponding class in QuantLib is
BlackScholesCalculator which can be found in

<ql/pricingengines/blackcalculator.hpp>

The corresponding constructor is

® BlackScholesCalculator(const boost::shared_ptr<StrikedTypePayoff>& payoff,
Real spot, DiscountFactor growth, Real stdDev, DiscountFactor discount);

with
m growth being e”"f7 where 7 is the foreign rate or dividend yield
m discount being e~ "d7 being the domestic rate (the usual interest rate)
m stdDev being o+/7
m payoff being a pointer to a striked payoff, e.g. a vanilla or asset or nothing payoff.

The class avoids any specification of the time to maturity. This is an encapsulation of time to
maturity considerations where otherwise day-counters and calendars would have to be taken
into account. The discount factors can be taken from the corresponding yield/dividend term

structure.

QuantLib Intro IT December 2010 121 / 148

The parameters can be returned by calling
m value() v
] delta() e

v S

[elast1c1ty() BS >

520
652

B vega(Time maturity) %

B rho(Time maturity) am

® dividendRho(Time maturity) Brf

® theta(Time maturity) %

® deltaForward() %;

2
m gammaForward () %}5

® itmCashProbability() P(St > K) with P being the bond martingale measure
® itmAssetProbability() P(St > K) with P being the asset martingale measure

The following example shows how the values above can be obtained for a vanilla put and
asset or nothing call.

QuantLib Intro IT December 2010 122 / 148

void testingBlackScholesCalculator (){

Real S0=100.0, K=105.0;

Real rd=0.034, rf=0.021, tau=0.5, vol=0.177

Real domDisc=std::exp(-rd*tau), forDisc=std::exp(-rf*tau);
Real stdDev=vol*std::sqrt(tau);

boost::shared_ptr<PlainVanillaPayoff> vanillaPayoffPut (
new PlainVanillaPayoff (Option::Put,K));

boost::shared_ptr<AssetOrNothingPayoff> aonPayoffCall(
new AssetOrNothingPayoff (Option::Call,K));

BlackScholesCalculator vanillaPutPricer (vanillaPayoffPut,S0,forDisc,stdDev,domDisc);
BlackScholesCalculator aonCallPricer (aonPayoffCall,SO,forDisc,stdDev,domDisc);

std:icout << M------------oo Vanilla Values------------- " << std::endl;
std::cout << “Value:" << vanillaPutPricer.value() << std::endl;
<< "Delta:" << vanillaPutPricer.delta() << std::endl;
<< "Gamma:" << vanillaPutPricer.gamma() << std::
<< "Vega:" << vanillaPutPricer.vega(tau) << std

<< "Theta:" << vanillaPutPricer.theta(tau) << std::endl;
<< "Delta Fwd:" << vanillaPutPricer.deltaForward() << std::endl;
<< "Gamma Fwd:" << vanillaPutPricer.gammaForward() << std::endl;
<€ Mmmmmmmmm oo AON Values-----==--==== " << std::endl;

<< "Value:" << aonCallPricer.value() << st
<< "Delta:" << aonCallPricer.delta() << std::endl;

<< "Gamma:" << aonCallPricer.gamma() << st endl

<< "Vega:" << aonCallPricer.vega(tau) << std::endl;

<< "Theta:" << aonCallPricer.theta(tau) << std::endl;
<< "Delta Fwd:" << aonCallPricer.deltaForward() << std
<< "Gamma Fwd:" << aonCallPricer.gammaForward() << st

endl;

QuantLib Intro IT December 2010 123 / 148

Value:7.46648
Delta:-0.602108
Gamma:0.0303691
Vega:26.8767
Theta:-3.72057
Delta Fwd:-0.598207
Gamma Fwd:0.0299769
—————————————— AON Values--------————-
Value:38.7447
Delta:3.42436
Gamma:0.0971735
Vega:85.9985
Theta:-18.3561
Delta Fwd:3.40217
Gamma Fwd:0.0959184

QuantLib Intro IT December 2010 124 / 148

Stochastic Processes
m Generalized Black Scholes Process
m Ornstein Uhlenbeck Process
m Heston Process
m Bates Process

QuantLib Intro IT December 2010 125 / 148

This section introduces the general class of stochastic processes which are modeled in
QuantLib. The basic idea of classes which depend on the stochastic process classes is to
initialize the process first and pass it to some other class. This class extracts the required
variables which are needed from the process. An example is a plain vanilla Black-Scholes
option pricer which retrieves the volatility from the process. Another example is a path
generator for Monte-Carlo pricing which requires the process parameters.

The base class for stochastic processes StochasticProcess can be found in
<ql/stochasticprocess.hpp>

The class is an observer and observable and models a general d-dimensional Ito process of the
form

dSt = u(t, St)dt + o(t,St)dWy.

The StochasticProcess has a public class called discretization which models the discretized
version of the process. The discretization is kept general. The class has the following public
member functions which are virtual.

Dimitri R QuantLib Intro IT December 2010 126 / 148

® Disposable<Array> drift(const StochasticProcess&, Time tO, const Array& x0, Time dt):
returns the drift of the process from time to with St, = xo to time to + At.

m Disposable<Matrix> diffusion(const StochasticProcess&,
Time tO, const Array& xO, Time dt): returns the diffusion matrix

m Disposable<Matrix> covariance(const StochasticProcess&,
Time t0, const Array& x0, Time dt): returns the covariance matrix
The StochasticProcess class provides the following virtual functions
m Size size(): the dimension of the process
m Disposable<Array> initialValues(): returns Sp
m Disposable<Array> drift(Time t, const Array& x): returns u(t,S¢)
m Disposable<Matrix> diffusion(Time t, const Array& x): returns o(t,S¢)

® Disposable<Array> expectation(Time tO, const Array& x0, Time dt): returns
E(St, + At|St, = o) according to a chosen discretization

m Disposable<Matrix> stdDeviation(Time tO, const Array& x0, Time dt) the same as the
expectation but with standard deviation

m Disposable<Matrix> covariance(Time t0, const Array% x0, Time dt) the same as the
expecation but with covariance

QuantLib Intro IT December 2010 127 / 148

m Disposable<Array> evolve(Time tO, const Array& x0, Time dt, const Array& dw) yields
Sto+4, given Sy, and the vector of Brownian increments AW. This is the crucial
function for path generators. Returns by default

E(Stota:l9t0) +0(Stg+a,15t) AW
with o being the standard deviation.

m Disposable<Array> apply(const Array& x0, const Array& dx) returns Sg + dS

The same header provides a StochasticProcessiD function which derives from the general
stochastic process. The class provides all of the functions derived from StochasticProcess
where Real objects instead of Array and Matrix objects are used.

QuantLib Intro IT December 2010 128 / 148

A concrete discretization of a process is provided in the EulerDiscretization class which
derives from StochasticProcess::discretization and consequently implements the
corresponding interface. We will show the implementation of the drift function::

®m EulerDiscretization::drift(const StochasticProcess& process, Time tO,
const Array& x0, Time dt) const {
return process.drift(t0, x0)*dt;
}

which is the well known implementation of the drift in the discretization

S(t + At) = ,u(t, St)At + 0’(Yf7 St)AWt

QuantLib Intro IT December 2010 129 / 148

An alternative discretization is provided in the EndEulerDiscretization class which also derives
from StochasticProcess::discretization and consequently implements the corresponding
interface. In opposite to the simple EulerDiscretization this class evaluates the drift or
diffusion function at the end of the discretized time interval [t,t 4+ A¢]. The interface is the
same one as in the simple Euler case, but the discretisation returns

u(t + Ag, St) instead of u(t, St)

and

o(t+ A¢, St) instead of o (¢, St)

Dimitri R c QuantLib Intro IT December 2010 130 / 148

Mathematical Tools

Fixed Income

=

Volatility Objects

=

Payoffs and Exercises

Black Scholes Pricer

g =

Stochastic Processes
m Generalized Black Scholes Process

=2

Dimitri R c QuantLib Intro IT December 2010 131 / 148

The GeneralizedBlackScholesProcess interface can be found in

<ql/processes/blackscholesprocess.hpp>

The class models a 1 dimensional stochastic process with the following SDE

dSy = (r(t) —q(t) — U(t’Qﬁ)dt + ocdWy

Consequently, a risk-neutral drift is used instead of the general drift ;. The risk neutral rate
is adjusted by a dividend yield ¢(t) and the corresponding diffusion term o. The constructor

is given as

GeneralizedBlackScholesProcess (
const
const
const
const
const

Handle <Quote>& xO0,

Handle<YieldTermStructure>& dividendTS,
Handle<YieldTermStructure >& riskFreeTS,
Handle<BlackVolTermStructure >& blackVolTS,
boost::shared_ptr<discretization>& d =
boost::shared_ptr<discretization>(new EulerDiscretization));

QuantLib Intro IT December 2010

132 / 148

The provided discretization will be be used in the evolve function to progress from time ¢ to
t + A¢. The same header has some derived functions which do not add additional
functionalities. The classes represent well known concrete processes such as

m BlackScholesProcess: the generalized process without dividend

m BlackScholesMertonProcess: the generalized process

B GarmanKohlagenProcess: the generalized process with domestic and foreign rate notation
In the following example, we will set up a Black-Scholes-Merton process with a flat risk free
rate, dividend yield and volatility term structure. We will then print the drift and diffusion

and simulate the process at discrete times. The Euler scheme is used for the simulation. The
output of the function is

Risk neutral drift: -0.00368368
Diffusion: 0.2144

Time: 0.1, S_t: 47.9983
Time: 0.2, S_t: 48.4418
Time: 0.3, S_t: 53.8613
Time: 0.4, S_t: 53.7439
Time: 0.5, S_t: 50.8117
Time: 0.6, S_t: 51.5973
Time: 0.7, S_t: 52.2014
Time: 0.8, S_t: 56.2463
Time: 0.9, S_t: 65.8869
Time: 1, S_t: 62.3316

Dimitri R ic QuantLib Intro IT December 2010 133 / 148

void testingStochasticProcessesi (O{

Date refDate=Date (27,Sep,2009)
Rate riskFreeRate=0.032

Rate dividendRate=0.012
Real
Rate
Calendar cal=TARGET();

DayCounter dc=ActualActual ();

boost::shared_ptr<YieldTermStructure> rdStruct(new FlatForward(refDate,riskFreeRate,dc));
boost::shared_ptr<YieldTermStructure> rqStruct(new FlatForward(refDate,dividendRate,dc));
Handle<YieldTermStructure> rdHandle(rdStruct);
Handle<YieldTermStructure> rqHandle (rqStruct);

boost::shared_ptr<SimpleQuote> spotQuote(new SimpleQuote (spot));
Handle<Quote> spotHandle (spotQuote);

boost::shared_ptr<BlackVolTermStructure> volQuote(new BlackConstantVol(refDate, cal, vol, dc));
Handle<BlackVolTermStructure> volHandle(volQuote);

boost::shared_ptr<BlackScholesMertonProcess> bsmProcess(
new BlackScholesMertonProcess (spotHandle ,rqHandle, rdHandle,volHandle));

Biglnteger seed=12324;
MersenneTwisterUniformRng unifMt (seed);
BoxMullerGaussianRng<MersenneTwisterUniformRng> bmGauss (unifMt);

Time dt=0.10,t=0.0;

Real x=spotQuote->value();
Real dw;

Size numVals=10;

std::cout << "Risk neutral drift: " << bsmProcess->drift(t+dt,x) << std:
std::cout << "Diffusion: " << bsmProcess->diffusion(t+dt,x) << std::endl;
std::cout << Mo—------—mmmmoo " << std::endl;

endl;

for(Size j=1;j<=numVals;++j){
dw=bmGauss .next () .value;
x=bsmProcess->evolve (t,x,dt,dw);
std::cout << "Time: " << t+dt << ", S_t: " << x << std::endl;
t+=dt;

e r—— QuantLib Intro I1 Demomtes 2000 || 10/ 148

The Ornstein-Uhlenbeck process evolves according to
dXi = k(0 — Xy¢)dt + odWy

The constructor is given as
B OrnsteinUhlenbeckProcess(Real speed, Volatility vol, Real x0, Real level)

The variable denoted as speed is k, the level corresponds to 6, vol is o and x0 represents X.
The process can be simulated analytically as the distribution of the SDE integrals is known.
Given the current value rg the process at time ¢ is normally distributed with mean

w=e Fltrg 4+ 0(1 — e)

and variance 1
0_2 —_ 0_27(1 _ e—Qnt)
2K

The next example will compare the analytical results to the one estimated by using results
from the evolve function.

Dimitri R QuantLib Intro IT December 2010 135 / 148

void testingStochasticProcesses2(){

Real x0=0.0311;
Real x;

Real theta=0.015;
Real kappa=0.5;
Real vo0l=0.02;

Biglnteger seed=12324;
MersenneTwisterUniformRng unifMt (seed);
BoxMullerGaussianRng<MersenneTwisterUniformRng> bmGauss (unifMt);

boost::shared_ptr<OrnsteinUhlenbeckProcess> shortRateProces(
new OrnsteinUhlenbeckProcess (kappa,vol,x0,theta));

Time dt=0.5,t=0.0;
Real dw;

Real mean=0.0,var=0.0;
Size numVals=10000;

for(Size j=1;j<=numVals;++j){
dw=bmGauss.next ().value;

x=shortRateProces->evolve (t,x0,dt,dw);
mean+=x;
var+=x*x;

Real analyticMean=std::exp(-kappa*dt)*xO+theta*(1-std::exp(-kappa*dt));
Real analyticVar=vol*vol*(0.5/kappa)*(1-std::exp(-2xkappa*dt));

Real estimatedMean=mean/numVals;

Real estimatedVar=var/numVals-estimatedMean*estimatedMean;

<< "Analytical Mean:" << analyticMean << std::endl;
<< "Estimated Mean:" << estimatedMean << std::endl;
<< "Analytical Variance:" << analyticVar << std::endl;

<< "Estimated Variance:" << estimatedVar << std::endl;

QuantLib Intro IT December 2010 136 / 148

The output of the function is

Analytical Mean:0.0275387
Estimated Mean:0.0276135
Analytical Variance:0.000157388
Estimated Variance:0.000159985

which shows that the analytical and estimated values are relatively close.

Dimitri R ic QuantLib Intro IT December 2010 137 / 148

A related process is the square root process described by the following SDE
dX; = k(0 — X¢)dt + o/ X dWs.
which is implemented in
<ql/processes/squarerootprocess.hpp>

The constructor is given as
m SquareRootProcess(Real b, Real a, Volatility sigma, Real x0 = 0.0,
const boost::shared_ptr<discretization>& d =
boost: :shared_ptr<discretization>(new EulerDiscretization))

QuantLib Intro IT December 2010 138 / 148

The famous Heston modell is based on the following stochastic differential equation

dS; = uSidt 4+ \/ViSpdW? 2)
dVi = k(0 —Vi)dt+ o/ VidWY , Vo = o (3)
dwZawy = pdt (4)

This parameters are reflected in the constructor which is given as

HestonProcess (const Handle<YieldTermStructure>& riskFreeRate,
const Handle<YieldTermStructure>& dividendYield,
const Handle<Quote>& sO,

Real vO, Real kappa,
Real theta, Real sigma, Real rho,
Discretization d = FullTruncation);

QuantLib Intro IT December 2010 139 / 148

Since the equation system doesn’t have a closed form solution, one has to think about the
discretization which is used in the evolve function. Possible choices are given in the
enumeration Discretization:

B Discretization{PartialTruncation, FullTruncation, Reflection, ExactVariance };

All methods are described in Lord et al. (2006). The ExactVariance method is described in
detail in the work by Broadie and Kaya (2006). We will discuss the first three methods first.
All methods assume that the volatility process is approximated by an Euler discretization

Viga, = Vi +5(0 — Vi) Ay + o/ ViAWY

with

AWY = Wign, — Wi

Dimitri R QuantLib Intro IT December 2010 140 / 148

This can be reformulated to yield

Vita, = Vi + 600 — kVi Ay + o/ ViAWY

The next step is to think about what happens if the value V; A, turns out to be a negative
number. On the right hand side, the term V; appears three times and there are different
rules to deal with this case at the different occurrences. We will rewrite V; A, as

Vt+At = f3(‘;;f+At)

with
Visa, = Fu(Th) + mAO — f2(V2) + o/ fo (V) AW

The above defined versions correspond to

Table: Heston Discretizations

Scheme f1 fa f3
Reflection |z |z |z
Partial Truncation T T T
Full Truncation x xt xt

Dimitri R QuantLib Intro IT December 2010 141 / 148

The exact variance relies on the fact that the transition law of Vi A, is given as

a2(1 — e~ Hhr) 2(dke™rAL V)
4k Xd 02(1 — e—rAL) k

with Xi being the non central chi square distributions with

40K
d=—""
-2

degrees of freedom. The next example shows a simulated asset and volatility proces.

Dimitri R QuantLib Intro IT December 2010

142 / 148

void testingStochasticProcesses3(){

Date refDate=Date (27,Sep,2009)
Rate riskFreeRate=0.032

Rate dividendRate=0.012
Real
Rate
Calendar cal=TARGET();

DayCounter dc=ActualActual ();

boost::shared_ptr<YieldTermStructure> rdStruct(new FlatForward(refDate,riskFreeRate,dc));
boost::shared_ptr<YieldTermStructure> rqStruct(new FlatForward(refDate,dividendRate,dc));
Handle<YieldTermStructure> rdHandle(rdStruct);
Handle<YieldTermStructure> rqHandle (rqStruct);

boost::shared_ptr<SimpleQuote> spotQuote(new SimpleQuote (spot));
Handle<Quote> spotHandle (spotQuote);

boost::shared_ptr<BlackVolTermStructure> volQuote(new BlackConstantVol(refDate, cal, vol, dc));
Handle<BlackVolTermStructure> volHandle(volQuote);

Real v0=0.12, kappa=1.2, theta=0.08, sigma=0.05, rho=-0.6;
boost::shared_ptr<HestonProcess> hestonProcess(new HestonProcess(rdHandle,rqHandle,spotHandle,vO0,
kappa,theta,sigma,rho,HestonProcess::PartialTruncation));

Biglnteger seed=12324;
MersenneTwisterUniformRng unifMt (seed);
BoxMullerGaussianRng <MersenneTwisterUniformRng> bmGauss (unifMt);

Time dt=0.10,t=0.0;
Array dw(2),x(2);

// x is the 2-dimensional process
x[0]=spotQuote->value ();

x[11=v0;

Size numVals=10;

for(Size j=1;j<=numVals;++j){
dw [0]=bmGauss .next () .value;
dw[1]=bmGauss .next () .value;

x=hestonProcess ->evolve (t,x,dt,dw);
std::cout << "Time: " << t+dt << ", S_t: " << x[0] << " V_t: M << x[1] << std ndl;

e TP TEri elswich | QuantLib Intro I1 Desomes gong || 145 /) 148

The output of the function is

Time: 0.1, S_t: 45.5306, V_t: 0.119682
Time: 0.2, S_t: 53.8413, V_t: 0.109652
Time: 0.3, S_t: 49.2252, V_t: 0.109647
Time: 0.4, S_t: 49.9689, V_t: 0.110166
Time: 0.5, S_t: 63.6438, V_t: 0.0957695
Time: 0.6, S_t: 61.4598, V_t: 0.0929384
Time: 0.7, S_t: 52.4621, V_t: 0.0954027
Time: 0.8, S_t: 45.6489, V_t: 0.0995833
Time: 0.9, S_t: 40.1511, V_t: 0.100911
Time: 1, S_t: 35.9219, V_t: 0.0990155

QuantLib Intro IT December 2010 144 / 148

The Bates process is similar to the Heston process but adds jumps to the evolution of the
asset price. The corresponding SDE can be stated as

dS: = (r—d—Xm)Sidt + VvS:dW1 + (e’ —1)SdNy
dve = K(0 —vp)dt + o\/vedWa
dWidWs = pdt
with
J ~ N(v,5%)
and

m:E(eJ)—I:e”+%62—1

Other formulations are common in the literature. According to the SDE above, the
constructor is given as

BatesProcess (const Handle<YieldTermStructure>& riskFreeRate,
const Handle<YieldTermStructure>& dividendYield,
const Handle<Quote>& sO,
Real vO, Real kappa,
Real theta, Real sigma, Real rho,
Real lambda, Real nu, Real delta,
HestonProcess::Discretization d
= HestonProcess::FullTruncation)

QuantLib Intro IT December 2010 145 / 148

The class derives from the HestonProcess class, the discretization types are the same as in the
Heston case. The evolve function accepts a 4 dimensional normal vector Array dw. The first 2
random variables are used to construct the Heston process, the last 2 are used to generate
the Poisson and normal variables for the jumps. This is clearly suboptimal, as the choice of
the type of the random number generator can not be changed. The next slide shows an
example, where we generate a path for both the asset and volatility. The output of the
function is shown below. It is obvious that the asset path has jumps.

Time: 0.1, S(t): 45.4782, V(t): 0.119682
Time: 0.2, S(t): 41.351, V(t): 0.118632
Time: 0.3, S(t): 53.0736, V(t): 0.102813
Time: 0.4, S(t): 44.8663, V(t): 0.104301
Time: 0.5, S(t): 39.2927, V(t): 0.105148
Time: 0.6, S(t): 37.8036, V(t): 0.102556
Time: 0.7, S(t): 38.4143, V(t): 0.0965597
Time: 0.8, S(t): 39.3437, V(t): 0.102807
Time: 0.9, S(t): 35.9401, V(t): 0.101385
Time: 1, S(t): 31.8307, V(t): 0.104224

QuantLib Intro IT December 2010 146 / 148

void testingStochasticProcesses4 (){

Date refDate=Date (27,Sep,2009)
Rate riskFreeRate=0.032

Rate dividendRate=0.012
Real
Rate
Calendar cal=TARGET();

DayCounter dc=ActualActual ();

boost::shared_ptr<YieldTermStructure> rdStruct(new FlatForward(refDate,riskFreeRate,dc));
boost::shared_ptr<YieldTermStructure> rqStruct(new FlatForward(refDate,dividendRate,dc));
Handle<YieldTermStructure> rdHandle(rdStruct);
Handle<YieldTermStructure> rqHandle (rqStruct);

boost::shared_ptr<SimpleQuote> spotQuote(new SimpleQuote (spot));
Handle<Quote> spotHandle (spotQuote);

boost::shared_ptr<BlackVolTermStructure> volQuote(new BlackConstantVol(refDate, cal, vol, dc));
Handle<BlackVolTermStructure> volHandle(volQuote);

Real v0=0.12, kappa=1.2, theta=0.08, sigma=0.05, rho=-0.6;
Real lambda=0.25, nu=0.0, delta=0.30;

boost::shared_ptr<BatesProcess> batesProcess(new BatesProcess(rdHandle,rqHandle,spotHandle,vO,
kappa , theta,sigma,rho,lambda,nu,delta, HestonProcess::PartialTruncation));

Biglnteger seed=12324;
MersenneTwisterUniformRng unifMt (seed);
BoxMullerGaussianRng<MersenneTwisterUniformRng> bmGauss (unifMt);

Time dt=0.10,%t=0.0;

Array dw(4),x(2);

// x is the 2-dimensional process
x[0]=spotQuote->value ();

x[1]=v0;

Size numVals=10;

for(Size j=1;j<=numVals;++j){
dw[0]=bmGauss.next ().value;
dw[1]=bmGauss.next () .value;

e TP TEri Relawich | QuantLib Intro I1 Demomtes 2000 || 147 148

Thank you!

QuantLib Intro IT December 2010 148 / 148

Broadie, M. and Kaya, “Exact simulation of stochastic volatility and other affine jump
diffusion processes,” Operations Research, 2006, 54 (2), 217-231.

Lord, R., R. Koekkoek, D.J.C. Van Dijk, and R.A. Investments, “A Comparison of
biased simulation schemes for stochastic volatility models,” 2006.

QuantLib Intro IT December 2010 148 / 148

	Mathematical Tools
	Integration
	Solver
	Exercise
	Interpolation
	Matrix
	Optimizer
	Exercise
	Random Numbers
	Copulas

	Fixed Income
	Indexes
	Interest Rate
	Yield Curve Construction

	Volatility Objects
	Smile Sections

	Payoffs and Exercises
	Black Scholes Pricer
	Black Scholes Calculator

	Stochastic Processes
	Generalized Black Scholes Process
	Ornstein Uhlenbeck Process
	Heston Process
	Bates Process

	References

