
Speeding up file system checks
in ext4

Theodore Ts'o

Why File System Checks Are Necessary

• Software is not perfect
 Bugs in kernel (File system, VM, Device Driver code)

• Hardware is not perfect
 Disk errors
 Memory errors

 File system checksums don't protect against
corruption in memory

Why we need fast file system checkers

• MTBU – “maximum time belly up”
• File system checks become less useful when it takes

significantly longer than restoring from backups
 Assuming, off course, that backups are available!

Original e2fsck optimizations

• The original version of e2fsck was based on fsck.minix,
written by Linus Torvalds

• E2fsprogs was developed to create a faster fsck
 Based on ideas from “A Faster fsck for BSD Unix” by Bina & Emrath, Winter

1989 Usenix Technical Conference
 Speeded up e2fsck by factor of 6-8 times

• Key Ideas
 Cache as much information as possible in pass 1 and pass 2

 In the normal case, each file system meta data block should only be read once

 Read directory blocks in pass 2 in sorted order to avoid seek penalties
 Read inodes with indirect blocks in sorted order in pass 1 to avoid seek

penalties

Summary of e2fsck's operation

• Pass 0 – basic superblock
• Pass 1 – inode table and indirect blocks/extents

 Iterate over all inodes and all indirect/extent tree blocks
 Cache location of directory blocks and inode type info
 70-90% of total e2fsck time

• Pass 2 – directory structures
 Read all directory blocks
 Store all parent directory information for pass 3
 10-25% of total e2fsck time

• Pass 3 – directory connectivity
 Make sure all directories are reachable from the root

• Pass 4 – inode reference counts
• Pass 5 – block and inode allocation bitmaps

Optional e2fsck passes

• Pass 1b/1c/1d – multiply claimed blocks handling
 In the case that one or more blocks are claimed by more than one inode
 Pass 1b – record all of the inodes that reference each multiply claimed block
 Pass 1c – scan directory blocks so we can report these inodes using full

pathnames (and not just an inode number)
 Pass 1d – for each inode, prompt whether the multiply claimed blocks

should be cloned, or the inode deleted

• Pass 3a – directory optimization
 E2fsck will invoke pass 3A under two conditions

 If a directory is corrupted, to recreate the hash tree data structures
 To optimize all directories if the -D option was passed to e2fsck

Speeding up fsck for ext4

• Using extents instead of indirect blocks
• High watermark for each block group's inode table
• Directory block allocation algorithm

Ext2/Ext3 Indirect Block Map

0
1
...
...
11
12
13
14

200
201
...
...
211
212
1237
65530

213

...
1236
123
...
...

1239
...
...

65531
...
...

65532
...
...

0
...
...
200
201
...
...
213
...
...
...
...
1239
...
...
...
...
65533
...
...

direct block
indirect block
double indirect block
triple indirect block

i_data

disk blocks

65532
...
...

65533
...
...

Extents

• Indirect block maps are incredibly inefficient for large files
 One extra block read (and seek) every 1024 blocks
 Really obvious when deleting big CD/DVD image files
 Every single indirect block must be read by e2fsck

• Extents are a more efficient way to represent large files
• An extent is a single descriptor for a range of contiguous

blocks

logical length physical

0 1000 200

On-disk Extents Format

• 12 bytes ext4_extent structure
 address 1EB filesystem (48 bit physical block number)
 max extent 128MB (16 bit extent length)
 address 16TB file size (32 bit logical block number)

struct ext4_extent {
 __le32 ee_block; /* first logical block extent covers */
 __le16 ee_len; /* number of blocks covered by extent */
 __le16 ee_start_hi; /* high 16 bits of physical block */
 __le32 ee_start; /* low 32 bits of physical block */
};

Ext4 Extent Map

200
201
...
...
1199
...
...
6000
6001
...
6199
...
...

 header
 0
1000
200
1001
2000
6000

...

...

 i_data
disk blocks

Extents Tree

• Up to 4 extents can be stored in inode i_data body directly
• Convert to an extents tree for > 4 extents

 Tree root is stored in inode body (could be in EA or other block)
 pointing to a index extents block
 leaf extents block store extents (up to 340 extents)

 extents lookup
 Leaf/Index extent block is sorted by logical block number
 Binary search for extent lookup

 extents insert
 B-Tree split if leaf block is full

• Last found extent is cached in-memory

Ext4 Extent Tree

i_data

index node ... 0

...

...

 header

 0
 0

...

...

leaf node disk blocks

extents
extents index
node header

root

Test image for doing e2fsck comparisons

• Sample filesystem taken from an Ubuntu 9.04 laptop
 70GB, originally taken from an SSD drive filesystem
 41% blocks used, 18% inodes used
 6.7% directories, 89.0% regular files, 4.0% symlinks, 0.3% devices
 Copied via rsync to freshly created ext3 and ext4 filesystem

 Used same partition for both ext3 and ext4 tests

5400 rpm laptop drive, raw speed measured via hdparm: 71.55 MB/s

• Summary fsck times
 Ext3: 211.0 seconds, 1588 MB read, 7.52 Mb/s
 Ext4: 18.75 seconds, 466 MB read, 24.85 Mb/s

Net savings for using extents

• Ext3 filesystem
 Number of inodes with indirect blocks: 40,860
 Number of inodes with double indirect blocks: 394
 Amount of indirect block metadata: 199MB
 Difference in pass 1 times between e2fsck of an empty and populated file

system: 170.56 seconds
 21.74 seconds, 51.76 Mb/s vs. 192.30 seconds, 6.89 Mb/s

• Ext4 filesystem
 Number of inodes with a depth > 1 extent tree: 60
 Difference in pass 1 times between e2fsck of an empty and populated file

system: 9.80 seconds
 0.07 seconds, 56.57 Mb/s vs 9.87 seconds, 20.56 MB/s

Skipping unused inodes in the inode table

• Ext 2/3/4 uses fixed inode table
 Advantages: robustness (always know where inodes can be found)
 Disadvantages: wastes space (typical metadata overhead 1.82%), slows

down mke2fs and e2fsck

• If we can reliably know how much of the inode table is
actually in use, we can skip the unused portion
 Requires checksummed block group descriptors for safety
 Eventually can speed up mke2fs time as well

• Net savings for skipping unused inodes
 Pass 1 time for an empty file system with ext3: 21.74 seconds
 Pass 1 time for an empty file system with ext4: 0.07 seconds
 Pass 5 time for an empty file system with ext3: 6.56 seconds
 Pass 5 time for an empty file system with ext4: 2.24 seconds
 Actual time saved will depend on how much of the inode table is actually in

use

File system layout improvements

• In the traditional ext3 layout, the metadata for each block
group (inode table, block/inode allocation bitmaps) is
located at the beginning of each block group
 With 4k file system blocks, block groups are 128 Mb each
 This means that files > 128 MB can not be contiguous

• In ext4, the block groups are grouped together into “flex_bg
groups”
 By default mke2fs uses 16 block groups/flex_bg group (must be power of 2)
 The inode table and bitmaps are placed at the beginning of the flex_bg

group (in the first block group)

• Idea for improving pass 2 times, reserve the first block
group in each flex_bg group for extent tree blocks and
directory blocks
 This reduces seek times when reading the directory blocks
 Reduces pass 2 times by 46% (11.81 seconds vs. 6.34 seconds)

Overall e2fsck performance summary

• Improvements from
 Fewer extent tree blocks to read instead of indirect blocks
 Uninitialized block groups means we don't have to read portions of the inode

table
 Directory blocks are allocated so they are grouped together to speed up

pass #2

 e2fsck on ext3 e2fsck on ext4
time MB read time MB read

Pass 1 192.3 1324 9.87 203
Pass 2 11.81 260 6.34 261
Pass 3 0.01 1 0.01 1
Pass 4 0.13 0 0.18 0
Pass 5 6.56 3 2.24 2

Total 211.1 1588 18.75 466

Summary of ext4 improvements

• Better Performance
 Extents help performance for large files
 Better block and inode allocation
 More efficient journal commits
 File preallocation

• Increased protection for data integrity
 Barriers on by default
 Metadata checksums

• New file system features
 Fine grained time stamps
 Better support for NFSv4

• Better file system scalability
 File system sizes up to 1 exabyte
 > 32000 sub directories

• Faster file system checks

How to use ext4

• Shipping in some community distributions
 Fedora 11
 Ubuntu 9.04 (but must upgrade to a mainline kernel)
 Technology previews in latest SLES and RHEL update releases

• To roll your own
 Need e2fsprogs 1.41.9
 Need 2.6.27 kernel or newer. Strongly recommend 2.6.31
 Need a file system to mount

Need a filesystem to mount

 Can use existing unconverted ext3 (or ext2) filesystem.
 Can convert an existing ext3 filesystem:

 Tune2fs -O extents,huge_file,dir_nlink,dir_isize /dev/sdXX
 Optional: can add uninit_bg and dir_index to the above, but then you must run

“e2fsck -pD /dev/sdXX

 Can create a fresh ext4 filesystem mke2fs -t ext4 /dev/sdXX

Getting involved

• Mailing list: linux-ext4@vger.kernel.org
• latest ext4 patch series

 git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4.git
 http://www.kernel.org/pub/scm/linux/kernel/git/tytso/ext4.git
 ftp://ftp.kernel.org/pub/linux/kernel/people/tytso/ext4-patches

• Wiki: http://ext4.wiki.kernel.org
 Still needs work; anyone want to jump in and help, talk to us
 Import and improve content from http://kernelnewbies.org/Ext4

• Weekly conference call; minutes on the wiki
 Contact us if you'd like dial in

• IRC channel: irc.oftc.net, /join #ext4

mailto:linux-ext4@vger.kernel.org
ftp://ftp.kernel.org/pub/linux/kernel/people/tytso/ext4-patches

The Ext4 Developers

• Alex Thomas (Sun)
• Andreas Dilger (Sun)
• Theodore Tso (IBM/Linux Foundation)
• Mingming Cao (IBM)
• Dave Kleikamp (IBM)
• Aneesh Kumar (IBM)
• Eric Sandeen (Red Hat)
• Jan Kara (SuSE)
• Akira Fujita (NEC)
• Curt Wohlgemuth (Google)
• Frank Mayhar (Google)

Legal Statement

• This work represents the view of the author(s) and does not
necessarily represent the view of IBM or of the Linux
Foundation.

• IBM is a registered trademark of International Business
Machines Corporation in the United States and/or other
countries.

• Linux is a registered trademark of Linus Torvalds.
• Microsoft and Windows are trademarks of Microsoft

Corporation in the United States, other countries, or both.
• Other company, product, and service names may be

trademarks or service marks of others.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

