Speeding up file system checks
in ext4

Theodore Ts'o

Why File System Checks Are Necessary

L]

Software is not perfect

Bugs in kernel (File system, VM, Device Driver code)
Hardware is not perfect

Disk errors

Memory errors

File system checksums don't protect against
corruption in memory

Why we need fast file system checkers

L]

MTBU - “maximum time belly up”

File system checks become less useful when it takes
significantly longer than restoring from backups

Assuming, off course, that backups are available!

Original e2fsck optimizations

The original version of e2fsck was based on fsck.minix,
written by Linus Torvalds
E2fsprogs was developed to create a faster fsck

Based on ideas from “A Faster fsck for BSD Unix” by Bina & Emrath, Winter
1989 Usenix Technical Conference

Speeded up e2fsck by factor of 6-8 times
Key Ideas

Cache as much information as possible in pass 1 and pass 2
In the normal case, each file system meta data block should only be read once
Read directory blocks in pass 2 in sorted order to avoid seek penalties

Read inodes with indirect blocks in sorted order in pass 1 to avoid seek
penalties

THE
I LINUX
FOUNDATION

Summary of e2fsck's operation

L]

Pass 0 — basic superblock

Pass 1 — inode table and indirect blocks/extents
Iterate over all inodes and all indirect/extent tree blocks
Cache location of directory blocks and inode type info
70-90% of total e2fsck time

Pass 2 — directory structures
Read all directory blocks
Store all parent directory information for pass 3
10-25% of total e2fsck time

Pass 3 — directory connectivity
Make sure all directories are reachable from the root

Pass 4 — inode reference counts

Pass 5 — block and inode allocation bitmaps TILINUX

FOUNDATION

Optional e2fsck passes

Pass 1b/1c/1d — multiply claimed blocks handling
In the case that one or more blocks are claimed by more than one inode
Pass 1b — record all of the inodes that reference each multiply claimed block

Pass 1c — scan directory blocks so we can report these inodes using full
pathnames (and not just an inode number)

Pass 1d — for each inode, prompt whether the multiply claimed blocks
should be cloned, or the inode deleted

Pass 3a — directory optimization

E2fsck will invoke pass 3A under two conditions
If a directory is corrupted, to recreate the hash tree data structures
To optimize all directories if the -D option was passed to e2fsck

I Speeding up fsck for ext4

Using extents instead of indirect blocks
High watermark for each block group's inode table
Directory block allocation algorithm

Ext2/Ext3 Indirect Block Map

1 _data
o 200 — — — = — =
1 201 I - = — —
S T -
v
1121 g 1236
4 — — >
19 i - v 123 123
13
14
B — »165530
——7 direct block
= 1ndirect block
mm= double indirect block
=== triple indirect block

~™165533

200
201

213

1239

Indirect block maps are incredibly inefficient for large files
One extra block read (and seek) every 1024 blocks
Really obvious when deleting big CD/DVD image files
Every single indirect block must be read by e2fsck

Extents are a more efficient way to represent large files
An extent is a single descriptor for a range of contiguous

blocks

logical

length

physical

0

1000

200

I On-disk Extents Format

12 bytes ext4_extent structure

address 1EB filesystem (48 bit physical block number)
max extent 128MB (16 bit extent length)
address 16TB file size (32 bit logical block number)

4 N
struct ext4_extent {
~ 1e32 ee block; /* first logical block extent covers */
__lel6 ee len; /* number of blocks covered by extent */

__lel6 ee start hi; /* high 16 bits of physical block */
__le32 ee_start; /* low 32 bits of physical block */

55

- /

Ext4 Extent Map

1 data

disk blocks

header

0

1000

200

1001

2000

6000

200
201

1199
6000
6001

6199

Extents Tree

Up to 4 extents can be stored in inode i_data body directly

Convert to an extents tree for > 4 extents

Tree root is stored in inode body (could be in EA or other block)
pointing to a index extents block
leaf extents block store extents (up to 340 extents)
extents lookup
Leaf/Index extent block is sorted by logical block number
Binary search for extent lookup
extents insert
B-Tree split if leaf block is full

Last found extent is cached in-memory

Ext4 Extent Tree

root

1 data

header| |

b 4

index nodg 4

1

|
]

L

extents
extents index
node header

A

leaf node

N

disk blocks

Y7)

Test image for doing e2fsck comparisons

Sample filesystem taken from an Ubuntu 9.04 laptop
/0GB, originally taken from an SSD drive filesystem
41% blocks used, 18% inodes used
6.7% directories, 89.0% regular files, 4.0% symlinks, 0.3% devices
Copied via rsync to freshly created ext3 and ext4 filesystem
Used same partition for both ext3 and ext4 tests
5400 rpm laptop drive, raw speed measured via hdparm: 71.55 MB/s
Summary fsck times
Ext3: 211.0 seconds, 1588 MB read, 7.52 Mb/s
Ext4: 18.75 seconds, 466 MB read, 24.85 Mb/s

Net savings for using extents

Ext3 filesystem
Number of inodes with indirect blocks: 40,860
Number of inodes with double indirect blocks: 394
Amount of indirect block metadata: 199MB

Difference in pass 1 times between e2fsck of an empty and populated file
system: 170.56 seconds

21.74 seconds, 51.76 Mb/s vs. 192.30 seconds, 6.89 Mb/s
Ext4 filesystem

Number of inodes with a depth > 1 extent tree: 60

Difference in pass 1 times between e2fsck of an empty and populated file
system: 9.80 seconds
0.07 seconds, 56.57 Mb/s vs 9.87 seconds, 20.56 MB/s

Skipping unused inodes in the inode table

Ext 2/3/4 uses fixed inode table

Advantages: robustness (always know where inodes can be found)

Disadvantages: wastes space (typical metadata overhead 1.82%), slows
down mke2fs and e2fsck

If we can reliably know how much of the inode table is

actually in use, we can skip the unused portion
Requires checksummed block group descriptors for safety
Eventually can speed up mke2fs time as well

Net savings for skipping unused inodes
Pass 1 time for an empty file system with ext3: 21.74 seconds
Pass 1 time for an empty file system with ext4: 0.07 seconds
Pass 5 time for an empty file system with ext3: 6.56 seconds
Pass 5 time for an empty file system with ext4: 2.24 seconds

Actual time saved will depend on how much of the inode table is actually in
use

THE

T JLINUX

FOUNDATION

File system layout improvements

In the traditional ext3 layout, the metadata for each block
group (inode table, block/inode allocation bitmaps) is
located at the beginning of each block group

With 4k file system blocks, block groups are 128 Mb each

This means that files > 128 MB can not be contiguous
In ext4, the block groups are grouped together into “flex_bg
groups”

By default mke2fs uses 16 block groups/flex _bg group (must be power of 2)

The inode table and bitmaps are placed at the beginning of the flex_bg
group (in the first block group)

Idea for improving pass 2 times, reserve the first block
group in each flex_bg group for extent tree blocks and
directory blocks

This reduces seek times when reading the directory blocks
Reduces pass 2 times by 46% (11.81 seconds vs. 6.34 seconds)

THE
I LINUX
FOUNDATION

Overall e2fsck performance summary

Improvements from
Fewer extent tree blocks to read instead of indirect blocks
Uninitialized block groups means we don't have to read portions of the inode

table
Directory blocks are allocated so they are grouped together to speed up
pass #2
e2fsck on ext3 e2fsck on ext4
time MBread time MB read
Pass 1 192.3 1324 9.87 203
Pass 2 11.81 260 6.34 261
Pass 3 0.01 1 0.01 1
Pass 4 0.13 0 0.18 0
Pass 5 6.56 3 2.24 2
Total 2111 1588 18.75 466

Summary of ext4 improvements

Better Performance
Extents help performance for large files
Better block and inode allocation
More efficient journal commits
File preallocation

Increased protection for data integrity
Barriers on by default
Metadata checksums

New file system features
Fine grained time stamps
Better support for NFSv4

Better file system scalability
File system sizes up to 1 exabyte
> 32000 sub directories

Faster file system checks

How to use ext4

Shipping in some community distributions
Fedora 11
Ubuntu 9.04 (but must upgrade to a mainline kernel)
Technology previews in latest SLES and RHEL update releases

To roll your own
Need e2fsprogs 1.41.9

Need 2.6.27 kernel or newer. Strongly recommend 2.6.31
Need a file system to mount

Need a filesystem to mount

Can use existing unconverted ext3 (or ext2) filesystem.

Can convert an existing ext3 filesystem:
Tune2fs -O extents,huge_file,dir_nlink,dir_isize /dev/sdXX

Optional: can add uninit_bg and dir_index to the above, but then you must run
“e2fsck -pD /dev/sdXX

Can create a fresh ext4 filesystem mke2fs -t ext4 /dev/sdXX

Getting involved

Mailing list: linux-ext4@vger.kernel.org

latest ext4 patch series
git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4.git
http://www.kernel.org/pub/scm/linux/kernel/git/tytso/ext4.qit
ftp://ftp.kernel.org/pub/linux/kernel/people/tytso/ext4-patches

Wiki: http://ext4.wiki.kernel.org
Still needs work; anyone want to jump in and help, talk to us
Import and improve content from http://kernelnewbies.org/Ext4

Weekly conference call; minutes on the wiki
Contact us if you'd like dial in

IRC channel: irc.oftc.net, /join #ext4

mailto:linux-ext4@vger.kernel.org
ftp://ftp.kernel.org/pub/linux/kernel/people/tytso/ext4-patches

I The Ext4 Developers

Alex Thomas (Sun)
Andreas Dilger (Sun)
Theodore Tso (IBM/Linux Foundation)
Mingming Cao (IBM)

Dave Kleikamp (IBM)
Aneesh Kumar (IBM)

Eric Sandeen (Red Hat)
Jan Kara (SuSE)

Akira Fujita (NEC)

Curt Wohlgemuth (Google)
Frank Mayhar (Google)

I Legal Statement

This work represents the view of the author(s) and does not
necessarily represent the view of IBM or of the Linux
Foundation.

IBM is a registered trademark of International Business
Machines Corporation in the United States and/or other
countries.

Linux is a registered trademark of Linus Torvalds.

Microsoft and Windows are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Other company, product, and service names may be
trademarks or service marks of others.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

